如图,已知点M是三角形ABC的重心,延长BM交AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:44:37
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
自己做做吧,多画图多思考,数学很有趣的,努力!
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
我们不妨取特殊情况看一下,让d点为ac的中点,三角形ade在ac的外侧,作出图形,则四边形abce为正方形,设边长为n,则bd=√2a,dm=a/2bm=√5a/2.似乎看不出三角形bmd有什么特殊的
能明白吧,我已经写的够详细了再问:嗯谢谢再答:不谢,四边形这块中考挺重要,好好学再问:嗯
过B作BG∥AC交EM的延长线于G.∵BG∥AC,∠BGD=∠CEM,∠GBM=∠ECM,而AM=CM,∴△BMG≌△CNE,∴BG=CE.∵AD∥EM,∴∠BFM=∠BAD,∠CEM=∠CAD,而∠
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
第一问,它始终保持是直角三角形,当它顺时旋转的最大是DA重合CE重合而在顺移过程中保持D要在AC上E要在CB上,当E在B上随着转时ME变长MD变短短到于A重合!当D在AC中线即E也在CB中线时它是等腰
延长BP交AC于D,∵AP平分∠BAC,∴∠BAP=∠CAP,又∵∠BPA=∠DPA=90°可证△APB≌△APD,P为BD中点,AB=AD,又∵M为AC中点,∴PM=1/2DC=1/2(AC-AD)
1、若点M是AC中点则AM=CM又因为PM=EM∠AMP=∠CME(对角线)所以△AMP≌△CME所以∠APM=∠E所以CE∥AB2、若CE∥AB则∠APM=∠E又因为PM=EM∠AMP=∠CME(对
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
设AC为aCE为b.则AB=BC=根号2/2a,CD=DE=根号2/2b,S△ABC=1/4a^S△CDE=1/4b^S△ACE=1/2abS△ABC+S△CDE-S△ACE≥01/4(a-b)^≥0
证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE
(1)如果M是AC的中点,那么AM=MC∴△AMP全等于△CME∴角BAC=角ACE∴CE//AB(2)CE//AB,∴角APM=角CEM又∵角AMP=角CME(对角相等)∴△AMP全等于△CME(角
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
(1)证明:因为三角形ABC是等边三角形所以AB=BC角ABC=角C=60度因为BM=CN所以三角形ABM和三角形BCN全等(SAS)所以角BAM=角CBN因为角BQM=角ABN+角BAM角ABC=角
(1)∠BQM=60度.证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠BAM=∠CBN;所以,∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=60度.(
图?再问:额。。。你放大看吧。再答:1.三角形ACD与三角形BCE全等(边角边定理)2.我能想到的这个角应该是个范围值,几个极限位置:当三角形ACB与三角形DCE全等时,且三角形DCE绕C旋转,B与D