如图,已知点DEF分别bcadce的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:43:12
如图,已知点DEF分别bcadce的中点
已知:如图,△ABC为等边三角形,点D、E、F分别在BC、CA、AB上,且AF=BD=CE,求证:△DEF是等腰三角形

△ABC为等边三角形AB=BC=CAAB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∠A=∠B=∠C=90度所以三角形AEF,BDF,CED全等即有对应边EF=FD=DE即

已知,如图,在平行四边形ABCD中,E,F分别是BCAD上的点,且AE//CF,求证∠BAE=∠DCF(多种方法求解)

证明:方法一.因为ABCD是平行四边形,所以角BAD=角BCD,AD//BC,又因为AE//CF,所以AECF也是平行四边形,所以角EAF=角ECF,所以角BAE=角DCF(等量减等量差相等).方法二

已知,如图,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.求证 △DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形

已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=

如图,在△ABC中,点D,E,F分别是各边的中点,已知△BAC的面积为80,求△DEF的面积.

∵点D,E,F分别是各边的中点∴四个小三角形全等∴SΔDEF=SΔABC/4=80/4=20再问:能不能再详细点啊再答:∵D、E分别是AB、AC的中点∴DE∥BC且DE=BC/2∴ΔADE∽ΔABC且

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,矩形ABCD中,点E,F分别在 AB,BC上,△DEF为等腰三角形,∠DEF=90°,AD

4再问:过程再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根据勾股定理,DE平方=EF平方,就可算出AD=4再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根

已知:如图,点A、B、C分别在三角形DEF上,且AC//DE,EF//AB,BC//DF

AB//DE,EF//BC,角BAC=角EDF,角BCA=角EFD,AC=DF,三角形ABC≌三角形DEF.

已知:如图△ABC中,D,E,F分别是三边种点,△DEF面积为4cm²,求△ABC的面积?

△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)

如图,已知长方形ABCD中,点E.F分别在AB.BC上,△DEF为等腰直角三角形,∠DEF=90º.AD+CD

因为△DEF是等腰直角三角形,所以DE=EF,∠DEF=90°,那么∠DEA+∠BEF=90°,因为△BEF是直角三角形,那么∠BEF+∠BFE=90°,所以∠DEA=∠BFE,另外,∠DAE=∠EB

如图,点DEF分别是三角形ABC的三条边中点,若三角形ABC的面积为S,求三角形DEF的面积

解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形

如图,已知△ABC∽△DEF,△ABC与△DEF的相似比是3:2,点G,H分别在BC,EF上,且BG:GC=EH:HF,

3:2百分之百的除了面积比是6::4其他的比全是3:2因为△ABC∽△DEF△ABC与△DEF的相似比是3:2且BG:GC=EH:HF而GC=BC-GCHF=EF-HE所以GC:HF=3:2因为AC:

已知如图,直角梯形ABCD中AD‖BCAD:BC=2:5 P是CD上一点,如果把△BCP沿折痕BP向上翻折点C重合点A求

过A作AE垂直BC于E因为把△BCP沿折痕BP向上翻折,点C恰好与点A重合所以三角形ABP全等于三角形CBP所以AB=BC,AP=CP,角ABP=角CBP因为AD:BC=2:5所以设AD=2X,BC=

如图,已知点def分别是△abc的bc,ca,ab上的点,de∥ba,df∥ca,求证∠fde=∠a

证明:因为de平行ba所以角dec=角a又因为df平行ca所以角fde=角dec所以角fde=角a

如图,已知I是△ABC的内心,AI,BI,CI的延长线分别交△ABC的外接圆于点DEF,求证EF⊥AD

连结AEAF.角CAE=CBE角FEA=FCA所以角DCA+CAE+FEA=DCA+CBE+FCA=1/2(BAC+CBA+BCA)=90°于是:DAE+FEA=90°终于垂直.完工

已知:如图  △ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是

∵△ABC为等边三角形∴AB=BC=CA∴AB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∵∠A=∠B=∠C=60度∴△AEF≌△BDF≌△CED即有对应边EF=FD=DE