如图,已知点b在线段cf上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:54:44
如图,已知点b在线段cf上
如图,在平面直角坐标系内,已知点A(0,6)点B(8,0),点P由点A开始在线段AO上以1cm/s的速度运动,点Q由B开

1.因为当x=0时,y=6x=8时,y=0所以可得方程组:b=68k+b=0解之得,k=-3/4b=6所以y=-3/4x+62因为三角形APQ与三角形AOB相似所以要分两种情况讨论(1)当三角形APQ

如图在平面直角坐标系内,已知点A(0,6)、点B(8.0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移

(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△A

如图,已知点B、E在线段AD上,AE=DB,AC=DF,BC=EF.

因为,AE=DB,且BE为公共边.所以,AB=ED.因为在三角形ABC与三角形DEF中AC=DF,BC=EF,AB=ED.所以,三角形ABC全等于三角形DEF.所以,角A=角D.因为在三角形CAE与三

如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段AB上.

(1)直线OB与⊙M相切.理由:设线段OB的中点为D,连接MD.因为点M是线段AB的中点,所以MD∥AO,MD=2.所以MD⊥OB,点D在⊙M上.又因为点D在直线OB上,所以直线OB与⊙M相切;(2)

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒 个

(1)点M与点O重合.∵△ABC是等边三角形,∴∠ABO=30°,∠BAO=60°.由OB=12,∴AB=8,AO=4.∵△PON是等边三角形,∴∠PON=60度.∴∠AOP=60度.∴AO=2AP,

如图,在平面直角坐标系中,已知点A(0,6)点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O(

[解](1)设直线AB的解析式为y=kx+b由题意,得①b=6②8k+b=0解得k=-3/4,b=6所以,直线AB的解析式为y=-3/4x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ

如图,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ ABO=30°.动点P在线段AB上从点A向点B以每

(1)∠ABO=30°,则:AB=2AO=8,OB=4√3;PB=AB-AP=8-2t.⊿PQB∽⊿AOB,PQ/AO=PB/AB,PQ/4=(8-2t)/8,PQ=4-t;PB=2PQ=8-2t,B

如图,已知△ABC中,∠B=∠C,BD=5厘米,BC=8厘米如果点P在线段BC上以3厘米/秒由B点向C点运动,同时,点Q

答:(1)一秒钟后,BP=CQ=3,PC=8-3=5=BD又,∠B=∠C,所以,△BPD与△CQP(2)若点Q的运动速度不相等,即当点Q的运动速度不是3厘米/秒,那么BP不等于CQ,则当BD=CQ=5

已知如图,q在线段ab外,且qa=qb.求证,点q在线段ab的垂直平分线上

证明:作QC⊥AB于C∴∠PQA=∠PQB=90°∵QA=QBQC=QC∴△QAC≌△QBC(H.L.)∴AC=BC∵QC⊥AB∴点q在线段ab的垂直平分线上

如图,已知B,F两点在线段CF上,AB等于DE,AC等于DF,BF等于CE求证:三角形ABC全等于三角形DEF

这个简单:AB=DE,AC=DF,BF+BE=CE+BE,即EF=BC,所以,三角形ABC和三角形DEF全等(三条边相等,则这两个三角形全等)再问:、亲你能解决下第二题吗thanks再答:晕,没看见第

如图,已知直线a平行b,直线c和直线a,b分别交于点C和点D,点P在线段CD上.

1.P在a外侧:∠APB=∠DBP-∠CAP2.P在b外侧:∠APB=∠CAP-∠DBP只要过点P作a、b的平行线就很清楚了

已知如图,点B、C在线段AD上,AB=CD,EA⊥AD,BF⊥BD,CE=DF,求证:CE∥DF

全等会证吧?HL全等,全等三角形对应角相等,同位角相等两直线平行.再问:那个,全等是会证,但是只学过SAS、ASA、AAS、SSS,怎么证明全等啊,我找不全条件啊。帮帮忙吧,快点啊,谢谢了再答:HL你

如图,已知点E、C在线段BF上,BE=CF,证明△ABC≌△DEF

选14这个最好证了∵BE=CF(已知)∴BE+EC=CF+EC∴BC=FE∵AB=DEAC=DF所以△ABC≌△DEF(SSS)

如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O

(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△A

如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.

证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴∠B=∠DEFBC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).

已知,如图,点B在线段CF上,AB平行CD,AD平行BC 求证:S△AEF=S△BCE

证明:连接BD,因为BC∥AD.所以SΔAFD=SΔABD因为AB∥CD所以SΔBEC=SΔBED所以SΔADE+SΔBEC=SΔABD=SΔAFD=SΔADE+SΔAEF所以S△AEF=S△BCE

如图,一直点E丶C在线段BF上,BE=CF,AB∥DE ∠ACB=∠F.求证:△ABC≌△DEF

楼主,证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.再问:如图,若三角形两直角分别与X正半轴,Y轴的负半轴交于B丶A,问OA与OB存在怎样的

已知:如图,点C在线段AB上,点M,N分别是AC,AB的中点.

(1)∵AC=6,点M是AC的中点∴CM=AC=3∵BC=4,点N是BC的中点∴CN=BC=2∴MN=CM+CN=5(2)MN=(a+b)/2(3)①当点C在线段AB上时,由(2)知MN=(a+b)/