如图,已知正三角形abc内接于圆o,p是弧bc上任意一点,连结pa,pb,pc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:00:23
证明:延长AO交弧BC于G,连接BG∵D为BC弧的中点∴∠BAD=∠CAD 即∠BAG+∠GAD=∠DAE+∠EAC∵AE⊥BC∴∠C+∠EAC=90o∵AG为直径∴∠G+∠BA
PA=PB+PC.理由: 在PA上截取PD=PB,连接BD,∵ΔABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠P=∠C=60°,∴ΔPBD是等边三角形,∴PB=BD,∠PBD
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
延长AO交圆O于F,连接BF∵AF是直径∴∠ABF=90°∴∠BFA+∠BAF=90°∵AD⊥BC∴∠ACB+∠DAC=90°∵∠ACB=∠BFA∴∠BAF=∠DAC∵E为弧BC中点∴∠BAE=∠CA
由于P点任意,且DEF位置不确定,应该是没有具体值的只有范围0
证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠BCE=60º∴∠ACD+∠ACB=∠BCE+∠ACB即∠DCB=∠ACE∴⊿DCB≌⊿ACE(SAS)∴BD=
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
关于如图,三角形ABC内接于圆O
(1)利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证AE=BD(2)证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠
以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 
证明:连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE=CE,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
首先,冒昧的问下,你的图在哪里?好吧.我盲解.现在我就认为你的D在AB边上,E在BC边上,F在AC边上.分析下,题目中给的两个数字,3和根号3.非常有意思!在初中数学中看见根号3或者根号3的倍数时脑袋
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4
∵EFGH是正方形,且EF=√2∴正方形对角线=EG=FH=√[(√2)²+(√2)²]=2∵圆O是正方形EFGH的外接圆,又是正△ABC的内切圆∴圆直径=2,半径=1设AB切圆于
A(0,根号3/2)B(-1,0)C(1,0)
第一个是120度,第二个90度,第三个72度.以第一个为例:可以在AC上取一点P,让AP=CN=BM.这样三角形OMN,ONP,OPM全等角MON=360/3=120度同理:正n变形该角度是360/n