如图,已知在圆O△ABC外接圆,AD为圆O的直径,且BD=BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:03:52
如图,已知在圆O△ABC外接圆,AD为圆O的直径,且BD=BC
如图,圆O是△ABC的外接圆,点D在圆O上,连接BD,CD,且∠ACB=∠BDC=60°,若AC=2根号3,求圆O的周长

由于圆周角相等、所以角BDC=角BAC=角ACB=60度所以ABC是个等边三角形所以圆的半径是2倍根号三除以根号三等于2周长等于4π再问:半径是怎么算的?再答:AC取个中点和圆心连上、将圆心连接A、圆

如图,⊙O是△ABC的外接圆,已知∠B=60,求∠ACO的度数.

连接co,同弧所对的圆周角是圆心角的一半,角aoc就等于120°半径oa=oc所以角aco=30°

圆的切线证明题.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

证:因为:M是AC的中点所以:AM=CM,且OM=OM所以:△OAM≌△OCM(边、边、边)由此得:∠AOP=∠COP(全等三角形对应角相等)连接OC,则OC=OA,且OP=OP所以:△AOP≌△CO

如图,在四边形ABCD中,∠ABC=∠ADC=90°.若△ABC的外接圆为圆O,试判断点D与圆O的位置关系,说明理由

D在圆上.理由如下:∵∠ABC=90°,∴△ABC的外接圆的直径就是斜边AC.由∠ADC=90°,∴D点在圆上.如果∠ADC>90°,D在圆内,如果∠ADC<90°,D在圆外.D不能在直线AC上.

如图,已知圆o为△ABC的外接圆,CE是圆o的直径,CD⊥AB,D为垂足,求证∠ACD=∠BCE

连结BE,∵CE为直径,∴∠CBE=90°=∠CDA,∵∠CAB=∠CEB(同弧所对的圆周角相等)∴∠ACD=∠BCE(等角的余角相等)

如图,已知⊙O是△ABC的外接圆,⊙O半径为8,sinB=3/4,则弦AC的长为?

延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

如图已知圆o是三角形abc的外接圆,若角a等于55度,则角boc等于多少度.

角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.

证明:(1)∵AB是直径,∴O是AB中点;又∵M为AC中点,∴OM是三角形ABC中位线,∴MO=12BC;(2)证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=O

已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是

证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF

如图,已知圆O是△ABC的外接圆,AD⊥BC于点D,AE是圆O的直径,是说明AB*AC=AD*AE

连接BE,ΔABE是RtΔ则RtΔEBA∽RtΔCDA(因为角C=角E)所以AC:AE=AD:AB即AB*AC=AD*AE

如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径,

(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/

已知,如图,圆形O是等边三角形ABC的外接圆,且其内切圆的半径为2厘米,求△ABC的边长及扇形AOB的面积

等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=

如图在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交三角形ABC的外接圆于点E过点B做圆O的

你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾

如图已知圆O为三角形abc的外接圆,∠A=30°,bc等于2cm,求圆o的直径(初三知识)

连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B