如图,已知在△abc内,角bac=60°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:18:29
如图,已知在△abc内,角bac=60°
如图4所示,已知D是三角形ABC内的一点,连结DB、DC,试探究BA+AC与DB+DC的大小关系.

证明:过D作直线交AB、AC于E、F,;根据三角形任意两边的和大于第三边有;BD

如图 在rt△abc中 ∠bac=90度,ca=ba,角dac=角dca=15度,求证:ba=bd

如图作DE垂直BC,交BC于F.并延长一倍到E.使DF=EF.连接CE,AE,BEBC是DE垂直平分线,CD=CE,BD=BECAB是等腰直角三角形∠ACB=45°∠DCF=45°-15°=30°;等

已知:如图D是三角形ABC内的一点,连接DB、DC.试探究BA+AC与DB+DC的大小关系

AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD

如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BA

∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAC=∠B′AC′,∵CC′∥AB,∠CAB=75°,∴∠ACC′=∠CAB=75°,∴∠CAC′=180°-2∠ACC′=180°-2×

如图15,已知在三角形ABC中,BE平分角ABC交AC于E,点D在BE延长线上,且BA*BE=BD*BE

条件错了吧,应该是BA*BC=BD*BE,∴BE平分∠ABC,∴∠ABE=∠EBC∵BA*BC=BD*BE∴BA/BD=BE/BA∴△ABD∽△EBC∴∠BCE=∠BDA又∵∠BEC=∠AED∴△AD

如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.

如图:以AD为边,在△ADB中作等边三角形ADE,连接BE.∵∠BAE=90°-60°-15°=15°,即∠BAE=∠CAD,且AB=AC,AE=AD,∴△EAB≌△DAC(SAS),∴∠BEA=∠C

如图D是△ABC内一点,连接DB,DC,试探究BA+AC与DB+DC的大小

延长BD与AC交与K在△ABK中AB+AK>BD+DK(1)在△CDK中CK+DK>CD(2)(1)+(2)AB+AK+CK+DK>BD+DK+CDAB+AC>BD+CD

已知如图在三角形abc中角b等于角c点d在ba延长线上ae平分角cad求证ae平行于bc

因为j角cad=角b+角c,而且角b+角c,所以角cad=2*角b=2*角c,因为ae是角cad的平分线,所以角cae=角ead=角b=角c所以ae平行于bc(同位角相等、内错角相等)

已知:,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE. (1)

因为∠ABC=∠DBE所以∠ABC+∠CBD=∠EBD+∠CBD所以∠ABD=∠CBE因为AB=CB,BD=BE所以:△ABD≌△CBE(SAS)

已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.

(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵BA=BC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS)(2)

如图,在△ABC中,已知∠BAC为90°,AB=AC.M为△ABC内一点,且BA=BM,AM=CM

∠ABM=30°过M作AB的垂线MD,过M作AC的垂线ME1)AM=CM,ME⊥AC=>AE=EC,即AE=(1/2)AC=(1/2)AB2)显然四边形ADME是矩形,于是MD=AE=(1/2)AB3

如图,在三角形ABC中,角BAC=90度,AB=AC,M是三角形ABC内的一点,恰好满足BA=BM,AM=CM,试求角A

证明:作MD⊥AC于点D,ME⊥AB于点E∵MA=MC∴AD=CD∵∠AEM=∠BAC=∠MDA=90°∴四边形ADME是矩形∴ME=AD=1/2AC∵AB=AC=BM∴ME=AD=1/2AC=1/2

一道有关对称轴问题已知△abc中,BA=BC,角ABC=80°,点P在△ABC内且角PAC=40°,角PCA=30°.求

在△ABC中,AB=BC,∠ABC=80°,P为形内一点,∠PAC=40°,∠PCA=30°,求∠BPC=?解设D是等腰△ABC的费马点,连BD,AD,CD.则∠ADB=∠BDC=∠CDA=120°.

如图,已知△ABC中,AB-AC,F在AC上,在BA的延长线上截取AE=AF,求证ED垂直BC.

证明:我们只要证明∠B+∠E=90°就可以得到ED⊥BC了,∵AB=AC,AE=AF,∴∠B=∠ACB,∠E=∠AFE,∵∠B+∠BAC+∠ACB=180°,∠BAC=∠E+∠AFE,∴∠B+∠ACB

如图已知△ABC中,AB=AC,F在AC上,在BA延长线上截AE=AF,求证ED⊥BC

因为AB=AC所以∠B=∠C因为∠B+∠C+∠BAC=180°所以∠C+∠BAC/2=90°因为AE=AF所以∠E=∠AFE因为∠BAC=∠E+∠AFE所以∠AFE=∠BAC/2因为∠AFE=∠CFD

已知:如图,在△ABC中,AB=AC,延长BA至点D,使AD=AB,连接CD,AE是△ACD的高.

因为AB=AC且AB=AD所以AC=AD所以△ACD为等腰三角形又因为AE是△ACD的高所以AE垂直DC且使CE=ED点E为CD的中点又因为A点为线段BD的中点所以AE是△DBC的中位线且平行于BC所

已知 如图 在四边形ABCD中 BC大于BA AD=DC BD平分角ABC 求证:角A+角C=180度

证明:做DE⊥BA于E(在BA延长线上)做DF⊥BC与F因为BD平分∠ABC,所以DE=DF又因为AD=DC,所以△ADE≌△CDF【直角三角形全等条件:斜边及一直角边对应相等的两个直角三角形全等(H

如图,已知△ABC是等边三角形,延长BC到D,在延长BA到E,使AE=BD,求证 CE=DE

过点D作DF∥AC交AE于F∴∠1=∠2(两直线平行,同位角相等)∴∠3=∠4=60°∵△ABC为等边三角形∴∠B=60°∴△FBD为等边三角形∴FD=BD∵BD=AE∴AE=FD∴BF=BD=AE∴

已知:如图△ABC中,AB=AC,在BA的延长线上及AC边上分别截取AE=AF.求证:EF ⊥ BC

延长EF交BC于点D∵AB=AC,AE=AF∴∠B=∠C,∠E=∠AFE∴∠B+∠E=∠C+∠AFE∵∠AFE=∠CFD∴∠B+∠E=∠C+∠CFD∴∠BDE=∠FDC∵∠BDE+∠FDC=180°∴