如图,已知在rt三角形中,角c等于90度,cd是角c的平分线,交ab于d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:13:26
如图,已知在rt三角形中,角c等于90度,cd是角c的平分线,交ab于d
已知如图在rt三角形ABC,角ACB=90度,将三角形ABC绕点C按顺时针方向旋转得三角形A1B1C,CB1,A1B1,

跟据旋转的性质,对应边所成的角都等于旋转角∴∠CB1A1=∠CBA∵∠B1DE=∠BDC∴∠BCB1=∠DEB1∵∠DEB1=∠AB1D∴∠BCB1=∠AB1D∴AB1∥BC

如图,在Rt三角形ABC中,角C=90度,AD平分角BAC,DE垂直平分AB.

  因为  AD平分角BAC    所以     ∠cad=∠dae    因为 

已知,如图,在Rt三角形ABC中,角BAC=90,D是BC上一点,角BAD=2角C,求证AD=AB

因为角BAC是90,角B=90-角C.角DAC=90-角BAD=90-2*角C.角ADB=角DAC+角C=90-2*角C+角C=90-角C=角B.因此三角形ABD是等腰三角形.AB=AD

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图1,已知在RT三角形ABC中,角C=90度,BC=4cm,AC=8cm,在RT三角形EDF中,角DEF=45度,EF

如图所示,作GD平行BFDQ垂直CF作GH垂直BCGHQD是矩形又因为∠DEF=45°所以QD=4,AL=AC-DQ=8-4=4△AGI全等△GBH(AAS)BH=GLGL+BH=BC=4所以BH=G

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平

如图,在Rt三角形abc中,角c等于90度,角cab,角abc的角平分线ad,bd交与点o,求角adb的度数∵∠C=90°,∴∠BAC+∠ABC=90°,∵AD、BD分别平分∠BAC和∠ABC,∴∠B

已知如图在Rt三角形ABC中角C=90° AD平分角BAC并且AD=BD求证AC=2分之1 AB

证明:AD平分∠BAC,则∠CAD=∠DAB=(∠CAB)/2AD=BD,在三角形ADB中,则:∠DAB=∠B所以∠B=(∠CAB)/2因为∠C=90°,所以:∠B+∠CAB=90°,所以3∠B=90

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知,如图,在Rt三角形ABC中,角C=90°,沿过B点的一条直线BE折叠这个三角形,是C点与AB边上的一点D重合,当角

当∠A=30°时,点D为AB中点.证明:在Rt三角形ABC中,∠A=30°,则AB=2BC∵BD=BC∴AB=2BD点D为AB中点

如图,已知在Rt三角形ABC中,角C=90°,AC=BC,BD为AC边上的中线.求sin角ABD

设BC=2,故AD=DC=1,BD=根号5过D点作AB垂线交AB于E,故DE=1/2*根号2故sin角ABD=(1/2*根号2)/(根号5)=(根号10)/10.

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的