如图,已知P为○O外一点,PA.PB均为○O的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:05:47
如图,已知P为○O外一点,PA.PB均为○O的切线
如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

已知:P为⊙O外一点,PA,

解题思路:本题主要根据切线性质和平行线的判定解答。解题过程:

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

如图,已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足PQ=PA,

你好!第一问的答案里有此式:(a-2)^2+(b-1)^2=a^2+b^2-1这个式子是根据PQ=PA得来的PA的长度用两点间的距离公式表示就是:PA=√[(a-2)^2+(b-1)^2]而PQ根据勾

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

如图,设P是圆O外一点,PO与圆O交于B点,PA是圆O的切线,已知PA=2,PB=1,则圆的半径是_____

延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

如图,已知p是圆o外的一点,PA切圆o 于A,AB是圆O的直径,PB交圆O于C,若 PA=2cm,

PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB

如图,已知三角形ABC是等边三角形,圆O为它的内接圆,点P是弧BC上任一点,求证PB+PC=PA

你的辅助线说明你的思路是正确的,继续思考下去找到条件就行了,加油.我提示一下,把三角形ABC旋转到ADB,旋转后两蓝角相等,两黑角相等,PC=BD通过红角和蓝角互补,证P、B、D共线AB=AC&nbs

如图,已知在圆O中,AB=CD,AB、CD的延长线相交于圆O外一点P,求证PA=PC

证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF

如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧AB上任意一点(不与A、B重合),连接O

(1)证明:连接OA,OB,如图所示:∵AP为圆O的切线,∴∠OAP=90°,在△OAP和△OBP中,AP=BP(已知)OA=OB(半径相等)OP=OP(公共边),∴△OAP≌△OBP(SSS),∴∠

已知:如图,AB是⊙O的直径,P为⊙O外一点,PA⊥AB,弦BC∥OP

证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,已知P为⊙O外一点,以PO为直径作⊙M,⊙M交⊙O于A、B两点,求证:PA、PB是⊙O的切线.

证明:连接OA,OB,∵A是以PO为直径的⊙M上一点,∴∠PAO=90°,根据切线的判定定理,可知PA是⊙O的切线.同理PB是⊙O的切线.

如图:已知⊙O半径为8cm,P为⊙O外一点,PO=16cm,PA、PB切⊙O于A、B,M为弧AB上一点,过M作⊙O切线交

(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF

如图,已知点P是圆O外一点,PA是圆O的切线,切点为A连接PO并延长交圆O于点C,B

设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq

如图,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.

证明:过P作PO⊥平面ABC,垂足为O所以PA在平面ABC的射影是AO,又PA⊥BC,根据三垂线定理的逆定理知,(在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂

已知如图,P为圆O外一点,PO交圆O于C,弦AB=PO于E,∠EAC=∠CAP,求证:PA是圆O的切线

【纠正:AB⊥PO于E】证明:连接OA∵OA=OC∴∠OAC=∠OCA∵∠OAC=∠OAE+∠EAC∠OCA=∠P+∠CAP∠EAC=∠CAP∴∠OAE=∠P∵AB⊥PO∴∠OAE+∠EOA=90&#