如图,已知pa为圆O切线,PBC为圆O割线,PA=6倍根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:46:48
(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌
证明:连AC,AB,AO,延长AO交圆O于D点可有DA垂直于PA,角DBA=90°得:角ADB=角PAB即:角ACP=角PAB角P=角P三角形ACP相似于三角形BAPAP^2=CP*BP
连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=
分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
切割线定理.分析:根据已知得到PC的长,再根据切割线定理即可求得PA的长.∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2根号5,此题主要是运用了切割
PA*PB=PA²*COS∠APB①=PA²*(PA²+PB²-AB²)/(2*PA*PB)②=PA²-AB²/2③=OP&sup
1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全
S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2
解题思路:根据切线长定理得PA=PB,EB=EQ,FQ=FA,从而得出△PEF周长解题过程:∴△PEF周长24cm
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
连接OA,OB,OP,然后用四边形OAPB的面积减去扇形OAB的面积.
连接OA,OB,OP将四边形OAPB分成两个含30度角的直角三角形,求出两个直角三角形的面积,然后减去扇形OAB的面积即可
证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;  
向量PA*向量PB=PA*PB*cos∠APB=PA^2*(PA^2+PB^2-AB^2)/(2PA*PB).余弦定理=PA^2-AB^2/2=OP^2+1-4(1^2-d^2)/2=OP^2+2d^