如图,已知ed为圆o的直径且ed=4,点a为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:13:20
(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,(3分)∴ABAD=AEAB,∴AB2=AD•AE=(AE+ED)•AE=(2
一楼太麻烦了连接OD,由题意可得OD垂直于CE,CB垂直于EBDE^2+OD^2=EO^2可得:R(半径)=1.5因为角ODE=直角=角BEC所以三角形EDO与三角形EBC是相似相三角形所以OD/BC
逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为
证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线
如图取坐标系,CD方程:y=x-c. 圆方程 x²+y²=r².C(x1,y1),D(x2,y2). E(c.0).
(1)证明:如图,连接OD,AD.∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴∠BAD=∠CAD,∠B=∠C,BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵O
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
∵AB经过CD的中点∴AB⊥CD,弧CB=弧BD∴∠COB=2∠DAB∵∠AOC=150°∴∠COB=30°∴∠DAB=30°/2=15°
^2是平方1) 由于AB=AC,所以∠ABE=∠C 由于∠C和∠D都是弧AB所对的圆周角,所以∠C=∠D 所以∠ABE=∠D,加上公共角∠BAE=
连接OA,∵BD为⊙O的直径,∴∠BAD=90°,∴BD=根号下(12+(2+4)平方)=4倍根号三,∴BF=BO=1/2BD=2根号三.∵AB=2,∴BF=BO=AB,∴∠OAF=90°.∴直线FA
证明:(1)连接AD,OD∵AB是⊙O的直径∴∠ADB=90°∴∠ADC=90°∵E是AC的中点∴DE=AE(直角三角形斜边中线等于斜边的一半)∴∠EDA=∠EAD∵OD=OA∴∠ODA=∠OAD∴∠
解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
连接AD,OD;推论一因为AB为直径则在三角形ABD中∠DBA+∠DAB=∠BDA=90°,∠DAB=∠ODA;推论二因为AB⊥AC则在三角形ABC中∠DAC=∠DBA推论三又因为E为AC中点在直角三
(1)证明:连接OA,∵A是BC弧的中点,∴OA⊥BC.∵AF∥BC,∴OA⊥AF.∴AF是⊙O的切线.(2)∵∠BAE=DAB,∠ABE=∠ADB,∴△ABE∽△ADB.∴ABAD=AEAB.∴AB
证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了
经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以
过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是矩形,连接OA.∵AB=CD,AB⊥CD,∴OM=ON,∴矩形OMEN是正方形.∵CE=2,ED=6,∴CD=2+6=8,∵ON⊥CD∴CN=
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
证明:①连接OE,∵OD∥AB,∴∠COD=∠A,∠DOE=∠OEA,∵OA=OE,∴∠A=∠OEA,∴∠COD=∠DOE,在△COD和△EOD中,OC=OE∠COD=∠EODOD=OD,∴△COD≌