如图,已知ed为圆o的直径且ed=4,点a为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:13:20
如图,已知ed为圆o的直径且ed=4,点a为
如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.

(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,(3分)∴ABAD=AEAB,∴AB2=AD•AE=(AE+ED)•AE=(2

如图,AB为圆O的直径,CB切圆O于B,CD切圆O于D,交AB的延长线于E,若EA=1,ED=2,则BC=_______

一楼太麻烦了连接OD,由题意可得OD垂直于CE,CB垂直于EBDE^2+OD^2=EO^2可得:R(半径)=1.5因为角ODE=直角=角BEC所以三角形EDO与三角形EBC是相似相三角形所以OD/BC

如图,已知AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,P为ED

逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为

如图,AB是圆O的直径,AD是弦,E 是圆O外一点,EF垂直AB于F,交AD于点C,且CE=ED,求证:DE是圆O的切线

证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线

如图,AB为圆O的直径,CD为一动弦,CD交AB于E,且角AEC=45度,求证CE的平方加ED的平方为定值

如图取坐标系,CD方程:y=x-c. 圆方程 x²+y²=r².C(x1,y1),D(x2,y2). E(c.0).

已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线

(1)证明:如图,连接OD,AD.∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴∠BAD=∠CAD,∠B=∠C,BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵O

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为○O的直径,且经过弦CD的中点E.已知∠AOC=150°.求∠BAD的度数

∵AB经过CD的中点∴AB⊥CD,弧CB=弧BD∴∠COB=2∠DAB∵∠AOC=150°∴∠COB=30°∴∠DAB=30°/2=15°

如图BD为圆o的直径,AB=AC,AD交BC于E,AE=2,ED=4.

^2是平方1) 由于AB=AC,所以∠ABE=∠C  由于∠C和∠D都是弧AB所对的圆周角,所以∠C=∠D  所以∠ABE=∠D,加上公共角∠BAE=

如图,BD为圆O的直径,AB=AC,AD交BC于E,AE=2,ED=4

连接OA,∵BD为⊙O的直径,∴∠BAD=90°,∴BD=根号下(12+(2+4)平方)=4倍根号三,∴BF=BO=1/2BD=2根号三.∵AB=2,∴BF=BO=AB,∴∠OAF=90°.∴直线FA

已知:如图,在Rt△ABC中,∠A=90°,以AB为直径做○o,BC交圆o于点D,E为边AC的中点,ED、AB的延长线相

证明:(1)连接AD,OD∵AB是⊙O的直径∴∠ADB=90°∴∠ADC=90°∵E是AC的中点∴DE=AE(直角三角形斜边中线等于斜边的一半)∴∠EDA=∠EAD∵OD=OA∴∠ODA=∠OAD∴∠

如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O

解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

已知:如图,AB为圆O的直径,AB⊥AC,BC交圆O于D,E是AC的中点,ED与AB的延长线相交于点F.

连接AD,OD;推论一因为AB为直径则在三角形ABD中∠DBA+∠DAB=∠BDA=90°,∠DAB=∠ODA;推论二因为AB⊥AC则在三角形ABC中∠DAC=∠DBA推论三又因为E为AC中点在直角三

已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于点E,AE=2,ED

(1)证明:连接OA,∵A是BC弧的中点,∴OA⊥BC.∵AF∥BC,∴OA⊥AF.∴AF是⊙O的切线.(2)∵∠BAE=DAB,∠ABE=∠ADB,∴△ABE∽△ADB.∴ABAD=AEAB.∴AB

已知:如图,AB是圆O的直径,CD为弦,且AB⊥CD于E,F为CD延长线上一点,连接AF交圆O于M.求证∠AMD=∠FM

证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了

如图已知PA、PB分别切圆O于点A和B,AC为圆O的直径,PC交AB于E,ED垂直AC于D,过E作PB的平行线交BC于F

经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以

如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,那么⊙O的半径长为______.

过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是矩形,连接OA.∵AB=CD,AB⊥CD,∴OM=ON,∴矩形OMEN是正方形.∵CE=2,ED=6,∴CD=2+6=8,∵ON⊥CD∴CN=

如图,大圆O的半径是小圆O1的直径,且OC垂直于圆O的直径AB,圆O1的切线AD交OC的延长线于点E,切点为D.已知圆O

如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A

已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2

证明:①连接OE,∵OD∥AB,∴∠COD=∠A,∠DOE=∠OEA,∵OA=OE,∴∠A=∠OEA,∴∠COD=∠DOE,在△COD和△EOD中,OC=OE∠COD=∠EODOD=OD,∴△COD≌