如图,已知CP为圆O的直径,AC切圆O于点C,AB切圆O于点D,并与AP的延长线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:23:58
如图,已知CP为圆O的直径,AC切圆O于点C,AB切圆O于点D,并与AP的延长线
如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

如图,已知AB是圆O的直径,AP是圆O的切线,A为切点,BP与圆O交于点C,D为AP的中点,求证CD为圆O切线

可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D

如图,以AB为直径的圆O中,弦CD⊥AB于E,圆O的切线CP交AB的延长线于P,AK⊥CP于K交圆O于H,点G是半圆AB

设圆心为O1.EF比AE等于tan角BAF等于9分之根号3而因为G是半圆AB上的3等分点,所以角BOG等于120度,ABG等于30度EF比BE等于3分之根号3所以AE等于3BE,即OE=BE=2分之一

如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.

如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C

如图已知在圆O中,弦AD.BC的延长线交于点P,且BC=CP,C是BD弧的中点.求证,AB是圆O的直径

连接线段OC,线段BD,OC与BD相交于点Q,因为C是弧BD的中点,且O是圆心,所以,OC垂直BD,且平分BD,线段BD中点是Q,又,BC=CP,故QC是三角形BDP的中位线,所以QC平行DP,又QC

如图,已知CP为圆O的直径,AC切圆O于点C,AB切圆O于点D,并与CP的延长线相交于点B,又BD=2BP,求1.PC=

证明:(1)∵PC是直径,∴∠PDC=90°,∴∠BDP+∠ADC=90°,又∠BDP=∠DCP,∴∠ADC=∠ACD,即AC=AD,∴AD也是⊙O的切线.∴BD2=BP•BC,∵BD=2

如图,已知CD为圆O的直径,点A为DC延长线上一点,B为圆O上一点,且∠ABC=∠D,求证:(1)AB为圆O的切线

(1)连结OB∵∠OBC=∠OCB,∠BOC=2∠D∴∠OBC+∠BOC/2=90°∴∠OBC+∠D=90°∵∠ABC=∠D∴∠ABC+∠OBC=90°,∴OB⊥AB,AB为圆的切线.(2)∵tanD

(急!)如图,已知AB为○o的直径,弦CD⊥AB于M,P为弧AB之中点,连CP交AB于F,过A做AH⊥CP于H交CD于E

1、\x09证明:连接AC∵弧AP=90度,∴∠ACP=45度⊿AHC为等腰直角三角形∴AH=AC又∵∠FME=∠FHE=90度∴F、M、E、H四点共圆∴∠AFH=∠CEH在RT⊿AFH和RT⊿CHE

如图,C为圆O上一点,过点C作直径AB的垂线CP,P为垂足,弦AE分别交PC、CB于点D、F,AD=CD=5,圆O的半径

条件不足,请检查题目再问:可题目就是这样的、再答:可用三角法吗?再问:���ʲô�������С�

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

如图,AB为圆O的直径,点P为圆O上一点,弦CP交AB于D,且BP²=DP*PC.(1)求证:∠ABC=45°

(1)是∠ABP=45吧?只要P为AB弧中点,题目的条件就能成立,无法确定C点位置,所以∠ABC度数似乎无法确定.而且从第(2)问的条件上也可看出AC是不等于BC的,因此∠ABC不一定等于45度若证明

如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,

①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴

如图,PA与圆O相切于A点,弦AB⊥OP,垂足为C,CP与圆O相交于D点,已知OA=2,OP=4 求∠POA的度数 弦A

(1)因为PA与圆O相切于A点故∠PAO=90°所以cos∠POA=OA/OP=2/4=1/2即∠POA=60°(2)由(1)得∠POA=60°又弦AB垂直OP所以sin∠POA=AC/AO=√3/2

已知 圆o的直径ab与弦ac的夹角角a为三十度,过点c做圆o的切线交ab的延长线与p 求证ac等于cp

证明:∵AB是直径,∠CAB=30º∴∠ACB=90º,∠CBA=60º∵CP是切线∴∠PCB=∠CAB=30º【弦切角等于夹弧所对的圆周角】∵∠P=∠CBA-

如图已知圆O为三角形abc的外接圆,∠A=30°,bc等于2cm,求圆o的直径(初三知识)

连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm

已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,AC与BD交于点P.已知AB=BD,且CP=0.6,求四边形A

设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作

证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4