如图,已知bd垂直ac,角ace等于90度,bd平分角abc,交ac于o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:28:33
如图,已知bd垂直ac,角ace等于90度,bd平分角abc,交ac于o
如图,已知三角形ABC中,AB=AC,BD垂直AC,AE垂直BC.求证角DBC=二分之一角BAC.

因为∠BDC=∠AEC=90°,∠C=∠C故∠DBC=∠CAE又因AB=AC,AE⊥BC故由三线合一得∠CAE=∠BAC/2故∠DBC=∠BAC/2

如图,已知AB=AD,CB=CD.求证:AC垂直平分BD

∵AB=AD,CB=CD.且AC为公共边,∴△ABC≌△ACD(SSS)∴∠BAC=∠DAC∴△ABO≌△AOD(SAS)∴∠AOB=∠AOD=90°,OB=OD即AC垂直平分BD

已知:如图,AC垂直OB,BD垂直OA,AC与BD交于E点,若OA= OB.求证AE⊥AC

AE垂直于BD吧,少年再问:AE=BE再问:会吗?再答:AE和AC是一条线的,怎么做再问:ae=be再答:…………再答:初二的是吧再问:嗯再问:角平分线再答:你求证的写错了再问:AE=BE再答:你仔细

如图,已知CA垂直AB,DB垂直AB,AC=BE,AE=BD,若AC=5,BD=12,求CE的长

根据条件中的垂直可以知道∠A=∠B又AC=BE,AE=BD所以△ACE≌△BED所以AE=BD=12根据勾股定理CE=13

如图,AC与BD相交于点O.已知AD垂直于BD,BC垂直于AC,AC等于BD,则OA=OB.

因为AD垂直于BD,BC垂直于AC,所以三角形ABD,和三角形ABC都是直角三角形.又因为AC=BD,AB是公共边,根据勾股定理,则AD=BCAC与BD相交于O所以角AOD等于角BOC又角ADO=角B

如图,已知AB垂直BD,ED垂直BD,AC垂直CE,且AB等于CD,求证:AC等于CE.

因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE

已知,如图,梯形ABCD中,AB=CD ,AD∥BC,对角线AC,BD相交于点O,AC垂直BD ,DH垂直BC于H ,E

证明:设DH交AC于点E因为AB=CD,AD//BC,所以:梯形ABCD是等腰梯形则∠ABC=∠DCB又BC是公共边所以△ABC≌△DCB(SAS)则∠ACB=∠DBC又AC⊥BD所以△BOC是等腰直

已知如图等腰梯形ABCD中,AB平行CD,AD=BC,AC垂直BD,

等腰梯形对角线相等,又因为对角线垂直,所以面积等于对角线乘积的一半,即6×6÷2=18

如图,已知:CE垂直AB于点E,BD垂直AC于点D,BD,CE交于点O,且AO平分角BAC,求证:

由AO平分∠BAC,∴∠BAO=∠CAO,又AO是公共边,∴AO=AO,∠AEO=∠ADO=90°,∴△AEO≌△ADO(AAS)∴EO=DO,∵∠EOB=∠DOC,∴△EOB≌△DOC(ASA)所以

已知:如图,在三角形ABC中,AD垂直BC,BE垂直AC,AD=BD,AC=BH.求证:角ABC=角BCH

证明:∵AD=BD,AC=BH.∴Rt⊿ADC≌Rt⊿BDH(HL),DC=DH.又∵AD⊥BC.∴∠ABD=∠DCH=45°.即∠ABC=∠BCH.

如图,已知△ABC和△ADC都是等边三角形.BD与AC是否垂直,为什么?

垂直因为都是等边三角形,所以AD平行且等于BCAB平行且等于DC所以ABCD为菱形因为ACBD为对角线所以AC垂直BD

如图,已知AD=AB,CD=BC,求证:AC垂直平分BD

∵AD=AB,CD=BC,AC=AC∴△ABC≌△ACD∴∠BAC=∠DAC∵AB=AD∴△ABD为等腰△∴AC垂直平分BD记得及时评价啊,希望我们的劳动能被认可,这也是我们继续前进的动力!

如图,ac于bd相交于点o,已知ad垂直于bd,bc垂直于ac,ac等于bd,则oa等于ob.请说明理由.

证:ad垂直于bd,bc垂直于ac,则角ADB=角ACB=90°而ac等于bd所以AD²=AB²-BD²=AB²-AC²=BC²即AD=BC

如图,已知∠ABC=∠ADC,AB=AD,求证AC垂直平分BD

证明:AB=AD∠ABD=∠ADB∠ABC=∠ADC所以,∠CDB=∠CBDCD=BC∠ABC=∠ADC,AB=AD三角形ACD与三角形ACB全等∠BA0=∠DAOAB=AD,AO=AO三角形ADO与

已知:如图 在三角形ABC中,角A=90,AB=AC,BD平分角ABC,CE垂直于BD交BD延长线

延长BA,CE交于点F,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∴∠ABD=∠ACF,又AB=AC.∴Rt△ABD≌Rt△ACF.∴BD=CF,∵∠BDA是△BDC的外角,∴∠BDA

如图,已知ac,bd是圆o的两条互相垂直的弦,并且ac,bd相交于点r,op垂直bc,oq垂直ad.

连接BO并延长交圆O于E,连接CE,可证∠BCE=90°∵∠ACB+∠ACE=90°,∠ADB+∠CAD=90°,∠ADB=∠ACB﹙等弧﹚∴∠ACE=∠CAD∴弧AD=弧CE∴AD=CE∵PO=1/

已知如图,三角形ABC中AB=AC角A等于90°,BD平分角ABC,CE垂直BD与E,求证,BD=2CE

证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2

已知,如图,三角形ABC中,AB=AC=5,BC=4,BD垂直AC与点D1

⑴过A作AH⊥BC于H,∵AB=AC=5,∴BH=1/2BC=2,∴AH=√(AB^2-BH^2)=√21,∴tan∠ABC=AH/BH=√21/2.⑵SΔABC=1/2BC×AH=2√21,又SΔA