如图,已知AB垂直于CD,O为角BAC,角ACD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:34:02
如图,已知AB垂直于CD,O为角BAC,角ACD
如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图.AB是半圆O的直径,CD垂直AB于D.CE是切线.E为切点

题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为圆O的直径,CD为圆O的弦,过AB分别作AE垂直于CD于E,BF垂直于CD于F.求证:CE=DF

证明:如图所示,过O作OH⊥CD于H,连接CO,DO,∵AE⊥CD,BF⊥CD,OH⊥CD∴AE∥BF∥OH∵AO=BO(等分定理)∴EH=FH∵OC=CD,OH⊥CD∴CH=DH∴CE=EH-CH=

如图,已知AD垂直于BC,AF垂直于CD,AB=BC.说明三角形BDE为等腰三角形

∵BC⊥AD,∴∠BDC+∠BCD=90°,∵AF⊥CD,∴∠BDC+∠BAE=90,∴∠BAD=∠BAE,∵AB=BC,∠ABE=∠CBD=90°,∴ΔABE≌ΔCBD,∴BE=BD,∴ΔBED是等

如图,已知AD垂直于BC,AF垂直于CD,AB=BC.说明三角形BDE为等腰三角形.

证明:RT△ABE和RT△CFE中:∠ABE=∠CFE=90°∠AEB=∠CEF所以:∠BAE=∠FCEAB=BC∠ABE=∠CBD=90°所以:RT△ABE≌RT△CBD所以:BE=BD所以:△BE

如图,已知⊙O的直径AB垂直于弦CD,垂足为E,F为CD延长线上一点,AF交⊙O于点G,求证:AC²=AG·A

证明:连接CG∵AB是直径,AB⊥CD∴弧AC=弧AD∴∠CAD=∠AGC∵∠CAG=∠FAC∴△CAG∽△FAC∴AC/AG=AF/AC∴AC²=AG*AF

如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA = EC.

1、连接BC,则:∠EAC=∠ECA=∠BAC=∠BCA所以:△ABC∽△ACE所以:AB/AC=AC/AE所以:AC²=AB*AE2、连接BC,BO则:∠ABC=∠BAC而∠PEB=∠EA

如图,已知AB是圆O的直径,CD是弦,AE垂直于CD,BF垂直于CD,垂足分别为E.F,且AE=3,BF=5,

过O作OM⊥CD于M,连OC因为AE⊥CD,BF⊥CD,所以AE∥OM∥BF又因为AO=BO,所以OM=(AE+BF)/2=4因为半径为5,所以由勾股定理,得CM=3所以CD=2CM=6

如图,已知AB是圆o的直径,P为延长线上的一点,pc切圆o于c,cd垂直ab于d,又pc=4圆o的半径为3,求cd的长度

∵pc与圆O相切,oc为圆O半径∴pc垂直于oc,△ocp为直角三角形根据勾股定理,∴op=√3^2+4^2=5∵S△ocp=S△ocp且cd垂直于ab∴(oc*cp)/2=(cd*op)/2即(3*

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

如图,已知CD是圆心O的直径,AB垂直于CD,垂足为C,弦DE//OA,直线AE、CD相交于点B.

(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠

如图已知四边形ABCD,对角线AC垂直BD于O,E、F、G、H分别为边AB、BC、CD、AD的中点.求证:四边形EFGH

提示:各中线即为这个四边形的边,平行于相应的“对角线”,则这个四边形EFGH为平行四边形,“对角线”互相垂直,则这个四边形的邻垂直,所以这个四边形是矩形.

如图 已知ab平行cd,ef垂直ab于m,试说明:ef垂直cd

ef交直线cd于点n由已知ef垂直于ab知∠emb=90又因为ab//cd得∠mnd=90(两直线平行同位角相等)所以ef垂直于cd

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

如图,已知AB、CD、EF相交于O,EF垂直于AB,OG为角COF的平分线,OH为角DOG的平分线

由题意得∵EF⊥AB∴∠AOF=90°∵OG平分∠COF∴∠COG=1/2∠COF∵∠AOC:∠COG=4:7∴∠COG=7/4∠AOC∴1/2∠COF=7/4∠AOC∴∠COF=7/2∠AOC∵∠A