如图,已知AB∥CD,∠1=∠2,求证∠3=∠4证明,延长BE交直线CD于点M,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:16:55
证明:连接BD,∵∠E+∠EBD+∠EDB=180º【三角形内角和180º】∠ABE+∠CDE+∠E=360º【已知】又∠ABE=∠ABD+∠EBD【三角形的一个外角等于
因为∠1+∠2=180°所以AB//EF又因为AB//CD所以CD//EF
证明:过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.再问:不能
作∠BEF=∠B,∴AB∥EF(内错角相等,两直线平行),∵∠BED=∠B+∠D,∴∠DEF=∠D,∴CD∥EF,∴AB∥CD.故答案为:内错角相等,两直线平行;∠D;EF;CD.
过E点向右作EF//AB(F点在E点右边哦)因为EF//AB所以∠B=∠BEF(两直线平行,内错角相等)因为∠B+∠D=∠BED=∠DEF+∠BEF所以∠D=∠DEF所以CD//EF(内错角相等,两直
由于你没有上传图形,我根据你的意思给你画了图形,估计没有什么大的差别 证明:如图∵AB∥CD∴∠MEB=∠EFD【两直线平行同位角相等】又∵EG∥FH∴∠MEG=∠EFH【两直线平行同位角相
证明:过点E作EF∥AB(点F在B、D一侧)∵EF∥AB∴∠B=∠FEB(内错角相等)∵AB∥CD∴EF∥CD(平行于同一直线的两直线平行)∴∠FEC=∠D(内错角相等)∵∠BED=∠FEB+∠FEC
∵AB//CD∴∠BAC=∠DCA∵AF//CE∴∠FAC=∠ECA∴∠BAC-∠FAC=∠DCA-∠ECA∴∠1=∠2∴∠2=20°
证明:∵AB∥CD(已知)∴∠BAD=∠CDA(两直线平行,内错角相等)同理,∵AE∥DF(已知)∴∠EAD=∠FDA(两直线平行,内错角相等)∵∠BAD=∠CDA,∠EAD=∠FDA(已证)∴∠BA
AB平行于CD∵AD∥CE,∴∠2=∠ADC(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠ADC(等量代换),∴AB∥CD(内错角相等,两直线平行).
对,等式性质.等式两边同加或减一个等量,等式值不变再问:性质1吗再答:等式性质好像只有一个....反正我只学了一个
∵∠2和∠3为对顶角∴∠2=∠3∵∠1=∠2∴∠1=∠3∵同位角相等∴AB平行于CD
证明:∵DE∥BC,∴∠1=∠BCD,又∠1=∠2∴∠2=∠BCD∴FG∥CD又∵CD⊥AB∴FG⊥AB.
证明:∵AD//BC【已知】∴∠BAD+∠ABC=180º【平行,同旁内角互补】∵∠BAD=∠BCD【已知】∴∠BCD+∠ABC=180º【等量代换】∴AB//CD【同旁内角互补,
∵角FGC=∠1+角2又∵角BFM=角1+∠2∴角FGC=∠BFM∴AB‖CD你用自己的语言组织一下吧,把一些原理补充进去让逻辑完整还有,图上没有M这个点,根据题的意图,我默认最底端1那里的点是M
证明:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C+∠CED+∠CDE=180°,∴∠CAB=∠CED+∠CDE.
证明:因为AB=CD,AC=DB,BC=BC所以△ABC≌△DBC所以∠ABC=∠DCB∠DBC=∠ACB所以∠ABC-∠DBC=∠DCB-∠ACB所以∠1=∠2
因为AB⊥BD,CD⊥BD所以AB//CD因为,∠1+∠2=180°所以AB//EF所以:CD//EF这是我在静心思考后得出的结论,如果不能请追问,我会尽全力帮您解决的~如果您有所不满愿意,请谅解~
∵∠1=∠2,∠1=∠3∴∠2=∠3∴AB∥EF又因AB∥CD∴CD∥EF
∵AB∥CD(已知)∴∠ABF=∠C(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠A=∠ABF(等量代换)∴AD∥BC(内错角相等,两直线平行)