如图,已知ab=4,以ab为边,在ab的同侧作等边三角形abd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:55:53
如图,已知ab=4,以ab为边,在ab的同侧作等边三角形abd
如图1,已知△ABC,分别以AB、AC 为边作△ABD和△ACE,且AD =AB,AC=AE ,∠DAB

(1)∵∠DAC=∠DAB+∠BAC∠BAE=∠CAE+∠BAC又∵∠DAB=∠CAE∴∠DAC=∠BAE∵AD=AB,AC=AE所以:△DAC≌△BAE(SAS)(2)由于△DAC≌△BAE有BE=

如图,已知线段AB=6cm,分别以点A,B为圆心,以AB的长为半径画圆

答:条件∠DBC=120°是多余的,因为四边形ADBC一定是菱形,并且边长和对角线AB相等.AD=DB=BC=AC=AB=6cm∠DBC=120°=∠DACCD=√3AC=6√3阴影面积S=圆面积-2

如图,已知线段AB.用直尺和圆规,以AB为底边做等腰三角形BAC,使高CD=AB

作射线AP,以A为圆心,AB长为半径画弧,交AP于B分别以A、B为圆心,大于AB/2长为半径画弧,两弧交于M、N两点过M、N作直线,交AB于点D以D为圆心,以AB长为半径画弧,交MN于C连接AC、BC

已知:如图,等腰三角形ABC中,AB=AC=4,若以AB为直径的圆O与BC相交于点D,DF//AB,DE与AC相交于E,

是DE/AB吧,你打错了吧连接OD,因为O为中点,OD=0.5AC,所以OD为中位线OD//AC,又因为DE//AB所以AEDO为平行四边形DE=0.5AB=2

如图,在平行四边形ABCD中,已知AB=4,BD=3,AD=5,以AB所在直线为x轴.以B点为原点建立平面直角坐标系.将

你的这个问题我怎么发现有点不对不对的1,AB=4,BD=3,AD=5  , 以B点为坐标原点,那么你给出的条件就是说ABC是一个直角三角形,(勾三古思玄五)以AB为X轴,

如图,AB=a,点P是线段AB上一点,分别以AP,BP为边作正方形,已知两正方形面积之和为S

由AB=a,设AP=x,PB=a-x,两个正方形面积和S=x²+(a-x)²=x²+a²-2ax+x²=2x²-2ax+a²=2(

如图,已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作

如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH‖PF,∵∠B=∠EPA=60°,∴BH‖PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也好为PH中

如图,在梯形ABCD中,AD//BC,AB⊥BC,以AB为直径的圆心与DC相切于点E.已知AB=8,边BC比A大6

边BC比A大6?当P为AB边中点,即可满足ADP为顶点的三角形与三角形BCP相似,理由如下:连接PD,PC,以AB为直径的圆与DC相切于点E,PE⊥DE;又AD//BC,AB⊥BC则PA⊥AD;又圆半

如图,在以点o为圆心的两个同心圆中,大圆的弦ab交小圆于点c、d,已知ab=4,cd=2,圆心o到直线ab的距离为1,则

解题思路:本题考查了垂径定理,即垂直于弦的直径必平分炫,再结合勾股定理即可解答出:两个圆的半径根号2和根号5.解题过程:最终答案:答案:根号5,根号2.

如图,已知ab是线段MN上的两点,MN=4,MA=1,MB>1,以a为旋转中心,顺时针旋转点M,以

你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!

初三数学题如图,已知△ABC中,AB=AC= 5,BC=4,点O在BC边上运动,以O为圆心,OA为半径的圆与边AB交于点

你题目数据有问题吧?等腰三角形ABC,当O为BC中点时最小,所以OA的最小值不可能可能是1的.再问:AB=AC=根号5

如图,已知△ABC中,AB=AC=√5,BC=4,点O在BC边上运动,以O为圆心,OA为半径的圆与边AB交于点D(点A除

AB=AC=√5,BC=4=>cos∠ABC=(BC/2)/AB=2/√5OB=x,=>OA^2=AB^2+OB^2-2AB*OB*cos∠ABC=5+x^2-4x=>cos∠OAB=(AB^2+OA

如图,已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作

PS:希望我的回答能够帮助你~请采纳是我对我的信任和肯定...

18.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB

如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH‖PF,∵∠B=∠EPA=60°,∴BH‖PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也好为PH中

已知:如图,直线AB与x轴,y轴分别交于点A(2,0),B(0,1),AB=√5以线段AB为直角边在第一象限内作等腰△A

(1)设AB解析式y=kx+b.代入A(2,0),B(0,1)得2k+b=0,b=1.     ∴k=-1/2,b=1.     ∴AB:y=-1/2x+1.  (2)过C作CD⊥x轴,垂足为D.  

已知,如图,△ABC中,AB=AC以AB为直径作圆O交边BC于D.交边AC于E

连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角

1如图,已知ΔABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边ΔADE .

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,