如图,对称轴为直线x=-1的抛物线y=ax的平方 bx c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:07:41
如图,对称轴为直线x=-1的抛物线y=ax的平方 bx c
如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△AB

如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△ABC的面积为40,在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5求

如图 抛物线y=ax2+bx+2与x轴交于A,B两点,点A的坐标为(-1,0),抛物线的对称轴为直线x=二分之三.

答:抛物线y=ax²+bx+2的对称轴x=-b/(2a)=3/2,b=-3a点A(-1,0)在抛物线上:a-b+2=0解得:a=-1/2,b=3/2抛物线解析式为y=-x²/2+3

如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不

由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(-1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴-1<x<3故填:-1<x<3

如图,抛物线的对称轴是直线x=1,它与x轴交于A,B两点,与y轴交于C点,点A,C的坐标分别为(-1,0),(0,32)

设函数的解析式是y=a(x-1)2+b,把(-1,0);(0,32)代入解析式可得;4a+b=0a+b=32,解得a=−12b=2,则解析式为y=-12(x-1)2+2,化简得:y=-12x2+x+3

如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).

答:1)f(x)对称轴x=-1,与x轴交点A(-3,0),则另外一个交点B与A关于对称轴x=-1对称,所以:点B为(1,0)2)a=1,对称轴x=-b/(2a)=-b/2=-1,b=2f(x)=x^2

如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△acd的

(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=-1对称,∵点A的坐标为(-3,0)∴点B的坐标为(1,0)(2)①a=1时,∵抛物

如图,已知抛物线y=-4/9x的平方+bx+c与x轴相交于A,B两点,其对称轴为直线x=2,且与x轴相交于点D,AO=1

解1)对称轴为x=2所以9/8*b=2b=16/9又AO=1所以A点坐标为(-1.0),该点在抛物线上代入得-4/9-16/9+c=0c=20/9所以y=-4/9x^2+16/9x+20/9y=-4/

如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,

1.已知三点A(-1,0),B(3,0),C(0,-3),得到抛物线y=x²-2x-32.只有在∠APC为直角的时候,△APC周长最小,∠APC为直角,可以得到两个点,分别为(1,-1)(1

1.如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(-1,

(1)二次函数y=x2+bx+c图象的对称轴是直线x=1,且过点A(-1,0),代入得:-b2×1=1,1-b+c=0,解得:b=-2,c=-3,所以二次函数的关系式为:y=x2-2x-3;(2)∵点

如图,对称轴为直线x=3的抛物线y=ax平方+2x与x轴交于点B、O

1.∵y=ax²+2x的对称轴是直线x=3,∴-2/2a=3a=-1/3∴y=-1/3x²+2x当x=3时y=-1/3*3²+2*3=3∴A(3,3)2.令对称轴与x轴交

如图,对称轴为直线x=-1的抛物线y=ax²+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3

(1)因为抛物线的对称轴为X=-1,A点坐标为(-3,0)则B点坐标为(1,0);(2)当a=1,而A,B两点在抛物线上,带入公式:0=1*(-3)^2+1*(-3)b+c,0=1*1^2+1*b+c

如图,抛物线y=ax²+bx+4的对称轴是直线x=3/2,与x轴交于C,并且点A的坐标为(-1,0)

(1)对称轴为x=-b/(2a)=3/2,b=-3ay=ax²-3ax+4x=-1,y=a+3a+4=0,a=-1y=-x²+3x+4(2)C(0,4),C,D关于x=3/2对称,

(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实

解题思路:根据已于二次方程的根的判别式和题目中所给的条件可解答。解题过程:

如图,在直角坐标系中,点B,C的坐标分别为(3,0)(0,3),过ABC三点的抛物线的对称轴是直线x=1,D为对称轴l上

再问:�Ǹ���ΪʲôBC��ԲA�İ뾶��再问:�����������Ѿ������ˣ��dz���л

(2013•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.

(1)由抛物线的轴对称性及A(-1,0),可得B(-3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四

如图1,抛物线y=ax2+bx的对称轴为直线x=-3/2且经过点a(-4,2),ab平行于x轴交抛物线于点b

当线段A′B′的中点落在第二象限时,设A'B'与直线OA的交点为M,∵∠A′OB′=90°,∴A'M=OM,∴∠MOA′=∠A′=∠A,∴AB∥OA′;∵AB∥x轴,∴OA′与x轴重合;此时A′(-2

如图,抛物线y=1/3x²+bx+c 经过A(-√3,0)B(0,-3)此抛物线的对称轴为直线L,

将A(-√3,0),B(0,-3)代入y=1/3x²+bx+c:0=1-√3b+c;-3=c,解得c=-3b=-2√3/3方程为:y=1/3x²-2√3/3x-3化成y=1/3(x

如图,对称轴为直线x=7/2的抛物线经过点A(6,0)和点B(0,4)1.求抛物线解析式及顶

(1)由抛物线的对称轴是,可设解析式为.\x0d把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为\x0d(2)∵点在抛物线上,位于第四象限,且坐标适合,\x0d∴y<0,即-y0,-