如图,在等边△abc中,点D,E分别在边BC,AC上,切DE∥AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:22:30
如图,在等边△abc中,点D,E分别在边BC,AC上,切DE∥AB
如图,在等边△ABC中,D是AB边上的动点,(不与A、B点重合),以CD为一边,向上作等边△EDC,连接.观察并猜想AE

因为cd等于cebc等于ac角bcd等于角ace(60度减角acd)所以三角形bcd全等于三角形ace所以角eac等于角dbc等于角acb等于60度所以ae平行于bc回答完毕

如图,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE‖BC.

证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再

如图,等边△ABC中,D是AB边上的动点,以CD为一边向上作等边△EDC.连接AE.

可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF

(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;

证明:(1)∵△ABC和△EDC是等边三角形∴∠ACB=∠ECD=60°,AC=CB,EC=DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠EAC=∠B

如图,在等边△ABC中,点D.E分别在BE,AB上,且BD=AE,AD与CE交于F

(1)证明:因为△ABC是等边三角形,所以AB=BC=CA,∠BAC=∠ACB=∠ABC=60°在△ACE和△BAD中,AB=AC,∠BAC=∠ABC,BD=AE.所以△ACE≌△BAD(SAS)所以

如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证△AEC≌△BDA

∵△ABC为等边三角形,所以AB=AC=BC,∴∠B=∠BAC=60°又在三角形BDA和三角形AEC中AB=AC,∠DBA=∠EAC,BD=AE,∴△BDA≌△AEC.再问:已知条件中没有∠DBA=∠

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F

1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠

如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连接B

(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=

如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,题目打不下,打下面.

(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=

2010•聊城)如图,在等边△ABC中,点D是BC边的中点,

解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略

如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.

(1)EF∥AC;(2)四边形ADEG为矩形;理由:∵EG⊥BC,E为切点,∵BC为圆O的切线,∴EG为直径,∴EG=AD;又∵AD⊥BC,EG⊥BC,∴AD∥EG,由EG=AD,AD∥EG,得出四边

(2012•延庆县二模)如图,等边△ABC中,边长AB=3,点D在线段BC上,点E在射线AC上,点D沿BC方向从B点以每

过点D作DF⊥AC于点F,∵点D的速度是每秒1个单位,∴CD=3-t,∵△ABC是等边三角形,∴∠ACB=60°,∴DF=CD•sin60°=32(3-t),①点E在AC上时,∵点E的速度是每秒2个单

已知:如图在等边△ABC中,点D,E分别在AB,AC上,且BD=AE,AD交CE于点F.求证:AD=CE;求∠DFC的度

∵△ABC是等边三角形∴AB=AC,∠B=∠BAC在△ABD和△CAE中AB=AC∠B=∠CABBD=AE∴△ABD≡△CAE(SAS)∴AD=CE

如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,D为线段AB上一个动点,以BD为边在△ABC外作等边

解题思路:本题考查勾股定理,二次函数最值,请看详细解答过程。解题过程:

如图,已知△ABC中,∠C=90°,∠A=30°,等边△DEF的一边EF在直角边AC上移动,当点E与点C重合时,点D恰好

因为等边△DEF,所以EF=ED=DF,当点E与点C重合时,∠DEF=∠DCF=60°,又因为∠A=30°所以当点E与点C重合,点D恰好落在AB边上即∠CDA=90°,因为直角三角形中,30°角所对边

如图,在等边△ABC中,点D;E分别在边BC;AB上,且BD等于AE,AD与CE交于点F.问AD等于CE吗?为什么.

证明:因为△ABC为等边三角形,所以AB=AC,且角B=角BAC,又有已知可得BD=AE,所以由边角边可得△ABD全等于△CAE,又有全等三角形的定义可得AD=CE.接下来只要转化成数学语言就可以了.

如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD

(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD

如图,在等腰Rt△ABC中,AC=BC.以斜边AB为一边做等边△ABD,使点C,D

因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等