如图,在等腰Rt△abc中,d为bc的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:32:24
(1)证明:∵等腰Rt△ABC中,∠C=90°,∴∠A=∠B.∵四边形DEFG是正方形,∴DE=GF,∠DEA=∠GFB=90°.∴△ADE≌△BGF.∴AE=BF.(2)∵∠DEA=90°,∠A=4
连CM∵M是Rt△斜边的中点∴MC=AB/2=MB∠MCE=45°=∠MBD又CE=BD∴△MCE≌△MBD∴ME=MD∴△MDE等边
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明;在Rt三角形DEA和DHC中易得角DAE=角DCH(1)又三角形ACB是等腰直角三角形则HA=HB=HC则有角BAC=角CBA=角BCH(2)有12可得角BCF=角CAE(3)在三角形ACG和三
如图:在等腰Rt△ABC中,∠C=90度,AC=8,F是AB边上的中点,点D、E分别在AC,BC边上运动,且保持AD=CE,连接DE,DF,EF,在此运动变化过程中,下列结论:1、△DFE是等腰直角三
连结CF,∵F是AB中点,∴CF是AB上的中线,∵AC=BC,∴CF⊥AB,〈ACF=〈FCB,(等腰△三线合一)∵〈ACB=90°,∴〈A+〈B=45°,〈ACF=〈BCF=45°,∴〈FCE=〈D
(1)∵△ABC和△DBE都是等腰直角三角形∴BA/BC=BD/BE=1/√2∵∠ABD=∠CBE=45°-∠DBC∴△ABD∽△CBE(2)AD/CE=1/√2,即:CE=√2AD∵BC=√2AC∴
是等腰三角形.证明:连接CMM是AB中点,∠C=90°CM=AB/2=BM∠ACM=∠B=45°BD=CE所以:△ECM≌△DBMEM=DM,△MDE是等腰三角形,得证.
在等腰Rt△ABC中,AC=BC,∠CAB=∠CBA=45°;CH⊥AB,∠ACH=∠BCH=45°;BF⊥CD,AE⊥CD,∠GAH+∠CAG=∠CAB=45°;∠CAG=45°-∠GAH;∠AGH
(1)易得∠B=∠A=45°,∠BFG=∠AED=90°又∵FEDG是正方形∴FG=ED因此△BFG≌△AED(AAS)∴AE=BF(2)易得∠B=∠BGF=45°(GD∥EF可推得)∴BF=FG=F
这是你问的这道题目的答案,但是不好意思哦,没截完整个答案,你看看吧,
1)连CM,因M是AB的中点.,故∠ECM=∠B=45°,CM=BM,又BD=CE故三角形CEM与BDM全等,所以ME=MD,故:△MDE是等腰三角形.2)因∠CME=∠BMD,而CM垂直AB,故,∠
证明:∵AE⊥CD于E∴∠EAC+∠ECA=90°=∠ECA+∠FCB∴∠EAC=∠FCB∵∠BFC=∠CEA=90°,AC=BC∴△AEC≌△CFB∴EC=FB又∵∠BDF=∠CDH,∠CDH+∠D
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
(1)AD⊥CF理由:∵△ABC为等腰三角形(已知) ∴∠CBA=∠CAB=45°(等腰直角三角形的定义)
证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△
因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等
解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,
你学过相似三角形没?学过我在给你发上来,没学过我就换个方法做.再问:学过全等三角形。。。再答:再答:因为初二知识有限,所以做法只能这样了,其中要作一些辅助线,全等三角形我基本没证明,应该不太难证的,有