如图,在直角坐标系中,点A B 分别在x轴和y轴正半轴上,且满足根号ob²-3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:23:29
(1)因为AB⊥x轴,CD⊥x轴,所以A、B两点横坐标相等,C、D两点横坐标相等,又因为直线AC的解析式为y=kx+3,所以可得A、C两点坐标分别为:A(-1,-k+3),C(-3,-3k+3)则|A
OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥
(1)点C(7/2,5/2)是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3-1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
对不起,你问题条件不全,该抛物线方程无法确定再问:y=x2+mx+n
这道题是不是缺条件,既然是求一个四边形面积应该是封闭的再问:没有啊。条件就这些。。再答:我会了答案是1再问:求过程!QAQ再答:连接AA撇交Y轴于点cAO=A撇O=3AA撇=6同理BB撇=4OC=1根
(1)四边形ABCD为菱形,AB边在x轴上,点D在y轴上,点A的坐标是(-6,0),AB=10,所以OD=8,B(4,0)、D(0,8)、点C的坐标为(10,8);(2)延长PQ交X轴于G点,延长BQ
(1)点B(6,8)(2)△HBP的面积为S是二分之一乘以b的纵坐标乘以po的长,故s=4(10-t);t【0,2】,
1.B(8,6)2.过C做CD⊥OBCD=8,OD=6OH:6=PH:8=(10-5t):10OH=6-3tPH=8-4tBH=4+3tS=PH*BH/2=(4-2t)*(4+3t)=-6t^2+4t
1)作CD⊥OB△CDB是等腰直角三角形∴CD:DB:CB=1:1:√(2)∴CD=DB=√(2)t/2OD=2-√(2)t/2∴点C坐标是(2-√(2)t/2,√(2)t/2)2)作CH⊥BP∵四边
解题思路:利用锐角三角函数求出∠AOB=30°,根据翻折变换的性质可得∠A1OB=∠AOB,A1O=AO,再求出∠A1OA=60°,过点A1作A1D⊥OA于D,然后求出OD、A1D,再写出点A1的坐标
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
设A(0,a),a>0,则B(-1/a,a),C(k/a,a)OB的方程:y=[a/(-1/a)]x=-a²x令x=k/a,y=-ka,D(k/a,-ka)反比例函数:y=-k²/
(1)点C坐标为(0,2),△AOB面积为4.(2)(∠BDA-∠BAD)÷∠BOC=2.(3)∠BNP=75°.我想答案就是这样子了.由于没有图,所以你可以带进去验算一下是不是,又:问一句你几年级了
一CB关于y对称,所以CB两点的横坐标为相反数,纵坐标相等所以C(6,0)二链接AP有三角形ABP的面积加上三角形APC的面积等于三角形ABC的面积所以有AB*PE/2+AC*PG/2=8*12/2A
OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥
连结PA,PB,PC.若sin角BPC=24\25,求tan角PAB的值?
⑴C(6,0)⑵选①PE+PG=定值.理由:SΔABC=1/2BC*AO=48,又SΔABC=SΔABP+SΔACP=1/2AB*PE+1/2AC*PG=5(PE+PG),∴PE+PG=48/5为定值
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.