如图,在正方形ABCD中的对角线AC上取一点E,使AE=CD,过点E做EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:24:21
如图,在正方形ABCD中的对角线AC上取一点E,使AE=CD,过点E做EF
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,四边形ABCD是3×3网格中的格的正方形,网格中的每个小正方形的边长均为1.⑴求正方形ABCD的面积;

图在哪里?再问: 再答:面积=5*5-4*4*1/2=17边长=根号下(1^2+4^2)=根号下17,所以是无理数

如图,在正方形的每个格子中都有一个数,且每一行每一列以及两条对角线上的三个数之和都相等,根据图中的已知数据计算字母a所表

设22上面的数是x,中间的数是y,那么4+y+22=19+y+x得x=7再设最右上角的数为z则4+a+z=22+7+z得a=25

如图,在四棱锥S-ABCD中,底面ABCD是正方形,

第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,

如图,四边形ABCD是3x3网格中的格点正方形,网格中的每个小正方形的变成均为1 求正方形ABCD的面积

见图自明.你不会传图吗?我来帮你.① 打开桌面上的图标“画图”﹙双击﹚.即可以用鼠标与左边的工具画图,工具的使用都是一看就会的.② 图形完成之后.单击上排左侧的“文件”,单击出表中

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1

如图,o为正方形ABCD对角线上一点,以o为圆心,OA的长为半径的○O与BC 相切于M,

o是哪个对角线上的点!应该是对角线AC上的一点吧!由于是正方形对角线AC上的点则O到BC和DC的距离是一样的.这个圆和BC相切,当然也和CD相切了

如图,在正方形ABCD–A1B1C1D1

画展开图再问:再问:�ܰ��æô��再问:再问:��һ��?再答:�㻭��չ��ͼ�������ܹ��Ƴ�����再问:��һ��Ŷ��再答:�⣿再答:������再问:���黹Ҫ����ô��再问:

如图,正方形网格中的每一个小正方形的边长都是 1 ,四边形 ABCD 的四个顶点都 在格点上,O为AD边的中点

旋转多少度没有指明,设想为90°.OC=√5,弧CC‘=1/2C圆=1/4*2π*√5=√5π/2.

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

已知:如图,正方形ABCD的边长为8cm,M在CD上,且DM=2cm,N是对角线上的一动点,则DN+MN的最小值为()c

10cm你把D沿AC对称到B,DN+MN的最小值就是BM 那图好像不能显示,你点一下就能看了

1、如图,将边长为2cm的正方形ABCD沿其对角

1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图,把正方形的对角戏AC分成几段,以每一段为对角线做正方形,设这几个正方形的周长为x,正方形ABCD的周长为y,则x与

很明显是C,每个小正方形的底边加起来就是大正方形的底边,同样的其他各边也相等

如图,在正方形ABCD中,E是对角线上一点,CE=CD,EF⊥AC,交AD与F,联结CF,求角DCF与角CFE

因为EF⊥AC角ADC是90º在RT三角形EFC与RT三角形FDC中CE=CDCF是公共边则RT三角形EFC≌RT三角形FDCEF=DF角DCF=角ECF因为ABCD是正方形,所以角ACD=

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG