如图,在正方形ABCD中E,F是AD上的两点,EF=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:00:57
如图,在正方形ABCD中E,F是AD上的两点,EF=3
如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱与底面垂直,E,F分别是AB1,BC1的中点,则以

连B1C,则B1C交BC1于F且F为BC1中点,则三角形B1AC中,EF∥AC,由EF⊄平面ABCD,AC⊂平面ABCD所以EF∥平面ABCD,而B1B⊥面ABCD,所以EF与BB1垂直,故A正确.A

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别为AB,PB的中点

(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

已知:如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.

(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4

如图,在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,且E、F、G分别为DB、AD中点,补充如下

“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图1 在正方形abcd中 e f分别是

看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,在正方形ABCD-A1B1C1D1中,E,F分别为棱D1D和B1C1的中点,求证

1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=

如图,在正方形ABCD-A1B1C1D1中,E,F,M,N分别为棱AB,CC1,C1D1的中点.

连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.

(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC

如图正方形ABCD中E,F是BC,DC的中点求证AE⊥EF

稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△