如图,在平面直角坐标系中点C(-3,0)点A.B分别在X轴Y轴的正半轴上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:13:20
如图,在平面直角坐标系中点C(-3,0)点A.B分别在X轴Y轴的正半轴上
如图,在平面直角坐标系中,a(4,4),b(1,0),c(5,1)

(1).6.5(2)(3)(4)没问题吧.(5.)若a大于0小于1.那么负a小于0大于负一(解不等式).p在附一到0之间,p1就在0到1之间.p2在1到2之间.那么p1p2长为恒定值1

如图,在平面直角坐标系xoy中

1.(-2,2)2.-1,0.53.1.5,-0.25

如图,在平面直角坐标系x0y中,

1)角GOA=角MON角AGO=角NMO所以相似(相似三角形的判定有点忘记了,但相信你能解决的)2)先求过点O、A、M的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:过M作MC垂直

如图,在平面直角坐标系xOy中,A(0,4),B(-2,0),D为线段AB的中点,C为BO的中点,P为OA上一动点.

(1)∵A(0,4),B(-2,0),D为线段AB的中点,∴点D的坐标为:(-1,2);故答案为:(-1,2);(2)设经过点D的反比例函数解析式为y=kx,∵点D的坐标为:(-1,2),∴k=xy=

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

(2012 云南)如图,在平面直角坐标系中

百度文库中有免费下载.

在平面直角坐标系中点A,B,C,D的坐标如图6所示,求直线AB与直线CD的交点坐标

A(-3,0),B(0,6);C(0,1),D(2,0)所以设AB的解析式为y=kx+b,则A就是x=-3,y=0时可得方程(1)0=-3k+b;B就是x=0,y=6时可得方程(2)6=0+b由(1)

如图在平面直角坐标系中点A(根号3,0)B(3倍根号3.2),C(0,2)

当T为何值时AB平行DF,设四边形AEFD的面积为S,求S关于t的解析式和定义域\x0d若抛物线y=x方+mx经过动点E当S小于2根号3时,m的取值范围

如图,在平面直角坐标系xoy中..救急!

1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

如图在平面直角坐标系中Rt三角形OAB

oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来

如图,在平面直角坐标系中点c(-3,0),点a,b分别在x轴

(1)A点的坐标是(1,0),B点的坐标是(0,√3)(2)有条件知道,边AB垂直于BC,所以三角形的面积S=0.5*|AB|*|BP|,又|BP|=2√3-t,所以S=0.5*2*(2√3-t)=2

如图在平面直角坐标系中,AB交y轴雨点C,连接OB

(1)△AOB=(2+2)×4-4×4÷2-4×2÷2=4设oc为x,则C(0,x)△AOB=△ACO+△BCO从而求出OC的长度为2;C(0,2)(3)设NP、BM重合于点G.叫NMB为X.则①∠M

如图,在平面直角坐标系中,AB交Y轴于点C,连接OB

(1)点C坐标为(0,2),△AOB面积为4.(2)(∠BDA-∠BAD)÷∠BOC=2.(3)∠BNP=75°.我想答案就是这样子了.由于没有图,所以你可以带进去验算一下是不是,又:问一句你几年级了

在平面直角坐标系xoy中,已知四边形OABC是平行四边形,A(4,0),C(1,1),点M是OA的中点,如图

根据平行四边形对边平行(1)设p(x,1)x属于【1,5】由题意4λ-x+1=0λ属于【0,1】(2)设p(x,y)x属于【1,5】y属于【0,1】向量OP*CA=3x-y属于【2,15】

如图1,在平面直角坐标系

根号a^2-4+根号4-a^2+16/a+2能不能写具体点根号里都包含哪些?

已知:如图,在平面直角坐标系xOy中,

没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.