如图,在平面直角坐标系中,菱形abcd的两个顶点c.d的坐标分别为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:42:27
如图,在平面直角坐标系中,菱形abcd的两个顶点c.d的坐标分别为
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0

(1)∵菱形ABCD,A(0,3),B(-4,0)∴C(-4,-5)∴经过点C的反比例函数的解析式为y=20/x(2)∵菱形ABCD,A(0,3),B(-4,0)∴D(0,-2)∴S△cod=1/2×

如图,在平面直角坐标系xoy中

1.(-2,2)2.-1,0.53.1.5,-0.25

如图平面直角坐标系中

  发了图片,最快回答,

如图,在平面直角坐标系x0y中,

1)角GOA=角MON角AGO=角NMO所以相似(相似三角形的判定有点忘记了,但相信你能解决的)2)先求过点O、A、M的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:过M作MC垂直

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

(2012 云南)如图,在平面直角坐标系中

百度文库中有免费下载.

如图,在平面直角坐标系中,点o是坐标原点,四边形ABCD为菱形,AB边在x轴上,点D在y轴上

(1)四边形ABCD为菱形,AB边在x轴上,点D在y轴上,点A的坐标是(-6,0),AB=10,所以OD=8,B(4,0)、D(0,8)、点C的坐标为(10,8);(2)延长PQ交X轴于G点,延长BQ

如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为______.

过点B作BD⊥OA于D,∵四边形OABC是菱形,∴OC=OA=AB=BC,BC∥OA,设AB=x,则OA=x,AD=8-x,在Rt△ABD中,AB2=AD2+BD2,即x2=(8-x)2+16,解得:

如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

1、根据勾股定理,|OA|=5,则|OC|=5,故C点坐标为(5,0),AC方程为:(y-0)/(x-5)=(4-0)/(-3-5),x+2y=5.2、当在AB边时,|PB|=|AB|-2t=5-2t

如图,在平面直角坐标系中,四边形ABCD是菱形,AD=4,点A的坐标是(0,2),求点B、C、D的坐标

∵菱形ABCD的顶点A的坐标是(0,2)∴由对称性,可得点C的坐标是(0,-2)又∵AD=4由菱形的对角线互相垂直,得∠AOD=90°∴OD²=AD²-OA²=4

如图,在平面直角坐标系xoy中..救急!

1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

如图在平面直角坐标系中Rt三角形OAB

oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)B(-4,0)

C点坐标为:(-4,-5)设经过X点的反比例函数解析式为y=k/x则:-5=-k/4求得k=5/4所以:经过点C的反比例函数的解析式为y=5/(4x)(2)设P点的横坐标为m,则P点到AO的距离为|m

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0)

只能用用高中方法OB=4,OA=3∴AB=5sin∠ABO=3/5cos∠ABO=4/5sin∠ABC=sin(∠ABO+90°)=cos∠ABO=4/5cos∠ABC=-3/5tan∠ABC=-4/

如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°

确认如下几点:1.B的坐标是(0,8√3),B点在Y轴上.2.a(1《a《3)是否a(1≤a≤3).3.t(0BP,QP与OB的交点在OB方向的延长线上.∵OB=8√3>4√3/3=OD∴QP与OB的

如图1,在平面直角坐标系

根号a^2-4+根号4-a^2+16/a+2能不能写具体点根号里都包含哪些?

已知:如图,在平面直角坐标系xOy中,

没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.