如图,在圆柱的底面圆周上A点处有一只蚂蚁,在圆术的上底面B点处有食物,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:58:53
作OA的平行线O1C连结CACB然后三角形ACB是直角三角形AB=2√6
分析:(I)根据AE⊥底面BEFC,可得AE⊥BC,而AB⊥BC,又AE∩AB=A满足线面垂直的判定定理所需条件,则BC⊥面ABE,根据线面垂直的性质可知BC⊥BE;(II)根据题意可知四边形EFBC
(1)证明:易知AP⊥BP,又由AA1⊥平面PAB,得AA1⊥BP,(2分)从而BP⊥平面PAA1,故BP⊥A1P;(5分)(2)延长PO交圆O于点Q,连接BQ,A1Q,则BQ∥AP,得∠A1BQ或它
侧面展开图为扇形,圆心角为π×2÷3=2π/3所以,最短路径的长度为腰长是3,顶角为2π/3的等腰三角形的底边长度为2×3×cos30°=6×根号3/2=3·根号3再答:二十年教学经验,专业值得信赖!
(1)证明:∵C是底面圆周上异于A、B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.∵AA1⊥平面ABC,BC⊈平面ABC,∴AA1⊥BC.∵AA1∩AC=A,AA1⊊平
将圆柱侧面展开,是个长方形长方形的长就是圆柱的底面周长10厘米,宽就是高13厘米.所以最近的距离就是展开这个长方形的对角线,也就是a到b的连线等于根号内(13的平方+10的平方)=根号269再问:我们
把圆柱侧面展开来成矩形,两点之间距离最短.
圆锥的底面周长=2π×5=10π,设侧面展开图的圆心角的度数为n.∴nπ×20180=10π,解得n=90,圆锥的侧面展开图,如图所示:∴最短路程为:202+202=202,故选D.
展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高12.根据两点之间线段最短,知最短路程是矩形的对角线的长,即122+92=15厘米.故答案为:15.
如图,过O作OE⊥AD,交AD于点E,交BC于点F,连接OC,OD,则E、F分别为AD、BC的中点,设正方形边长为2x,故ED=x,又OD=2,∴由勾股定理得OE=4−x2,∴OF=|OE-EF|=|
展开成长方形,那么AC=pi*r=3pi,又有AB=15,由勾股定理,bc=跟号(15^2-9*pi^2)再问:得数再答:12
圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=122+(3π)2=122+92=225=15
圆柱的4个点(左上,右上,右下,左下)依次为,DBCA延边缘剪开可得一个长方型,在RTADB中因为DB=18(等于2分之1圆柱底部的周长)AD=24根据勾股定理AB=30CM所以最短路程为60cm再问
把圆柱题侧面展开成矩形,两点之间线段最短,会了吧孩子
最短路程就是取A.B点加外圆点上的矩形:就是2个半径加一个高就可以了3+3+12=18
如上侧面展开图底面周长=πr=3.14x20=62.8cmAB=√(30²+62.8²)=69.6cm
楼主问的是全面积大小还是金属丝AC长度?全面积=2*π*1^2+2π*1*2=6π金属丝长度为根号(4+π^2)
楼主辅助线OB做的不错,因为OO1平行于BB1,所以最后就是求AB1与BB1的夹角已知母线为L,所以BB1=L,且BB1垂直于圆柱体地面,所以BB1垂直于AB,角B1BA=90度,又因为OB=OA=R
展开圆柱侧面图得矩形,长即底面圆周长=2派,宽即母线长=2最短路径即为矩形对角线,勾股定理得2根号(1+π²)