如图,在四棱锥 P-ABCD中,AD BC,角ACD=角PAB=90°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:12:19
如图,在四棱锥 P-ABCD中,AD BC,角ACD=角PAB=90°
如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,

解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=

(2014•温州二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=2,

(本小题14分)(I)证明:∵AB=1,BC=2,∠ABC=45°,∴AB⊥AC…(2分)∵PA⊥平面ABCD,∴PA⊥AB,又∵AC∩AP=A∴AB⊥平面PAC,又∵AB∥CD∴CD⊥平面PAC,∴

如图,在四棱锥p-ABCD中,pA垂直于平面ABCD,四边形ABCD是平行四边形,且AC垂直于CD,pA=AD,MQ分别

正在做,等做完了再发送再问:好的,谢谢再答:有个条件是AC⊥CD吗?再问:嗯,是的再答:(1)取PC中点K点,连接MK,QKMK//CD,CD//AB所以,MK//ABKQ//PBKM∩KQ=K所以面

如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD⊥底面ABCD,PA=PD,M,N分别为AB,PC中点,求证

解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.

(1)证明:连结AC、AC交BD于O,连结EO, ∵底面ABCD是正方形,∴点O是AC的中点,在△PAC中,EO是中位线, ∴PA∥EO,而平面EDB且平面EDB,所以,PA∥平面

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点,求

(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面 PAD⊥平面ABCD,PA=PD,E,F分别是...

取PC中点M,连结EM、FM,则EM是△PDC中位线,EM//PD,同理FM//BC,∵四边形ABCD是矩形,∴BC//AD,∴FM//AD,∵AP∩PD=P,EM∩FM=M,∴平面EFM//平面PA

如图,在底面为平行四边形的四棱锥P-ABCD中,点E是PD的中点.

证明:连接BD,交AC于点O,连接EO,∵四边形ABCD为平行四边形∴BO=OD,∵点E是PD的中点,∴E0是△DBP的中位线,∴EO∥BP,又EO⊂平面AEC,BP⊄平面AEC,∴PB∥平面AEC.

如图,在四棱锥P-ABCD中,ABCD是平行四边形,MN分别是AB,PC的中点

简单写一下:1.取CD中点E,连ME、NE易证ME∥AD,NE∥PD(中位线)∴面NME∥面PAD2.梯形作FN∥BC交PB于F,连FM∵ME∥BC,NF∥BC∴ME∥NF∴四边形MENF是梯形也可以

如图,四棱锥P-ABCD中,ABCD为矩形,△PAD⊥面ABCD

1)连AC则:E、F分别是CP、AC中点EF//AP所以,EF‖面PAD2)面PAD⊥面ABCD,PAD∩面ABCD=AD,CD⊥AD所以,CD⊥面PADCD⊂面PDC所以,面PDC⊥面P

在底面是平行四边形的四棱锥P--ABCD中,

(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC   又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC

你没有给原图,我也不知道那些图中的长度,所以我就用字母代替了,由于字母代替计算很麻烦我就也就给你求出两个平面的法向量了,最后你用向量的内积公式求以下就可以了,不管面的长度是字母还是数字里面的过程就是这

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD于O.

证明:(I)∵PA⊥平面ABCD,∴PA⊥BD.又BD⊥AC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(II)∵AC⊥BE,AC⊥BD,BE∩BD=B,∴AC

在四棱锥P-ABCD中,底面AB

解题思路:确定好各点的坐标。解题过程:最终答案:略

如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积

ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,则二面角

∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角