如图,在元O 的直径为10,弦AB=8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:22:07
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
作OG⊥MN与G,OG=√(OM^2-MG^2)=3,△OGH∽△AFH,则h1/OG= HA/ OH,△OGH∽△BEH,则h2/OG= HB /OH,所以h
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵OD∥BC∴∠AOD=∠OBC,∠COD=∠OCB∴∠AOD=∠COD∵OA=OC,OD=OD∴△AOD≌△COD(SAS)∴∠OCD=∠OAD∵AD切
过A,O,B,分别作AE⊥CD,OF⊥CD,BG⊥CD于E,F,G所以AE‖OF‖BG又因为AO=BO,所以OG是梯形AEGB的中位线,所以OG=(AE+BG)/2连OC,在直角三角形OCF中,OC=
h1+h2=圆心O到MN的距离的2倍,利用垂径定理,得到这个距离是3,则h1+h2=6再问:“h1+h2=圆心O到MN的距离的2倍”这是为什么?再答:可以将弦MN平移到其一个顶点与点A(或者B)重合。
两种极端情形一种是MN和AB共一个顶点(随便共哪个)一种是MN和AB垂直原始就是6
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
正方形中心到角的距离为根号(2倍(a/2)的平方)=0.707a所以四角下垂的最大长度是0.707a-0.5b-
∵BC=10,且CE:EB=3:2,∴CE=6,BE=4,∵C为ACB的中点,CD为直径,∴CD⊥AB,∴PB=PA,∠BPC=90°,∵PE⊥BC,∴∠BEP=90°,∵∠EBP=∠PBC,∴△BE
如图所示,连接AM,QN.由于PQ是⊙O的直径,∴∠PNQ=90°.∵圆O的弦PN切圆A于点M,∴AM⊥PN.∴AM∥QN,∴PMPN=PAPQ=34.又PN=8,∴PM=6.根据切割线定理可得:PM
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°
作A关于直径CD的对称点E,连接BE,BE与CD的交点即为点P的位置.而BE的的长度即为PA+PB的最小值.因为E是点A关于直径的对称点,所以角EOD等于角AOD等于六十度.而B为弧AD的中点,所以角
楼主你这图画的实在是.三角形ODB是直角三角形,OB=2OD,所以角BOD=60度角AOC=60度.OA=OC.所以三角形OAC是等边三角形,角A=60度r=5cm,DC=2.5*3^(1/2),BC
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的
作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径