如图,在三角形ABC中,AM比MD=4比1,BD比DC=2比3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:04:42
再答:����再答:����Ŷ
http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png
延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM
因三角形ABC为直角三角形,角A=90度,M为BC的中点.所以:AM=BM=MC在直角三角形CME与直角三角形DMB中角B=角CEM所以两三角形相似EM/BM=MC/DM所以AM*2=DM乘EM
自C作AM的平行线,与BA交一点,然后用中线定理结合三角形两边之差小于第三边定理即可证明再问:能给我过程吗再答:按我上面说的,假设交点为D,则2AM=CDAB=AD三角形中位线定理AD-AC
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度
延长AM至P,使AM=AP.再过M作DM平行于BP,交AB于D(利用中位线的性质,D是中点).在三角形ADM中,两边之差小于第三边.即AM大于二分之一(AB-AC).再问:方便上传延长后的图型吗?再答
证明:在三角形ABM中,根据三角形两边之差小于第三边,得AB-BM
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
由题意可知△ANM△ACM△MNB为直角三角形,由勾股定理则有:AN²+MN²=AM^2=AC²+CM²①BM²=MN²+BN²②
纳尼,上图再答:????
根据已知AB=ACDB=DC得ADB与ADC全等得角BDM与角MDC相等然后BD=CD所以BDM与MDC全等所以角M为90度再问:已知三角形ABC和三角形DCE是等边三角形链接AEBD求证AE=BD麻
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC