如图,在△abc内接于圆O,AB是圆O的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:18:17
解题思路:根据题意,由圆的性质和三角形全等的知识整理,分析可以求得解题过程:
连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC
∠AOC=2∠B=60°圆心角等于圆周角的2倍,所以∠AOC=60度∵AO=CO,OH⊥AC∴∠AOH=30°、△OAC为等边三角形,所据此求出OA长度,可以计算出劣弧弧AC的长;根据含30°角的直角
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
关于如图,三角形ABC内接于圆O
连接OB∵∠A=30°∴∠BOC=60°∵OB=OC∴∠OBC=60°∵∠BCD=30°∴∠D=30°∴∠OCD=180°-60°-30°=90°∴CD与⊙O相切阴影的面积=S△OCD-OCD的面积∵
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
(1)证明:因为sinB=1/2,所以角B=arcsin1/2=30度,所以角AOC=2角B=60度因为角D=30度,所以角DAO=90度,所以DA垂直于OA因为A是半径OA的外端,所以DA是切线(2
∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
⊿ABD∽⊿BED⊿AEC∽⊿BED⊿AEC∽⊿ABD证明⊿AEC∽⊿BED证明如下:∵∠DAC与∠DBC为同弦所对的圆周角∴∠DAC=∠DBC同理∠BDA=∠BCA由∠DAC=∠DBC∠BED=∠A
(1)直线CD与⊙O相切.理由如下:如图,∵∠A=30°,∴∠COB=2∠A=60°.又∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60°.又∵∠BCD=30°,∴∠OCD=∠OCB+∠BCD=
因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径
由题意AB/AP=AP/AB所以三角形ABD相似于三角形APB所以∠ABD=∠APB弧AB所对的角为∠APB和∠ABC所以∠APB=∠ACB∴∠ABD=∠ACBAB=AC∠APB和∠ABC对同弦AC∴
(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线.(2)①证明:∵D是弧AC的中点,∴∠
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行