如图,在△abc中BD垂直AC与D,CE垂直AB与E连接DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:13:20
证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∵AB=AC,∠BAD=∠CAE∴△ABD≌△ACE(AAS)∴AD=AE∵BE=AB-AE,CD=AC-AD∴BE=CD
题目写错了,应该是AD=BD证明:∵AD⊥BC,BE⊥AC∴∠ADB=∠ADC=∠BEC=90∴∠CAD+∠C=90,∠CBE+∠C=90∴∠CAD=∠CBE∵AD=BD∴△ACD≌△BFD(ASA)
因为AB=AC所以∠ABC=∠C因为∠A+∠ABC+∠C=180度则∠A+2∠C=180度∠C=90度-∠A/2因为BD垂直AC则∠DBC+∠C=90度∠DBC+90度-∠A/2=90度所以∠DBC=
角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd
(1)证明:如图,在BD上取点M,使DM=CD,∵DM=CD,且AD⊥BC,∴AD为CM的垂直平分线,∴AM=AC,∴∠C=∠AMC,∴∠C=2∠B,∴∠AMC=2∠B,∵∠AMC=∠B+∠BAM,∴
解答如下:因为AB=AC,所以∠ACB=∠ABC=∠ABD+∠DBC因为BD⊥AC所以∠BAC+∠ABD=∠DBC+∠ACB所以∠BAC+∠ABD=∠DBC+∠ABD+∠DBC即∠BAC=∠DBC+∠
∵BD⊥MN,∴∠ABD+∠BAD=90°∵∠BAC=90°,∴∠BAD+∠CAE=90°∴∠ABD=∠CAE∵AB=AC,∠ADB=∠CEA=90°∴△ABD≌△CAE∴AD=CE,AE=BD∴DE
1)∵AC⊥BD,∴∠ACB=∠ACD=90º,又CB=CD,AC=AC,∴△ACB≌△ACD,∴AB=AD,△ABD是等腰三角形;2)∵AC⊥BD,∴△ACB,△ACD是直角三角形,又AC
角BEC=角ADB,所以三角形ABD与三角形HBE相似角ABD=90-角BHE=90-角BAC故角BAC与角BHE相等
证明:将AC与BD的交点设为O∵AB=AD∴∠ABD=∠ADB∵∠CBD=∠ABC-∠ABD,∠CDB=∠ADC-∠ADB,∠ABC=∠ADC∴∠CBD=∠CDB∴BC=DC∴△ABC≌△ADC(SA
证明:∵AD=BD,AC=BH.∴Rt⊿ADC≌Rt⊿BDH(HL),DC=DH.又∵AD⊥BC.∴∠ABD=∠DCH=45°.即∠ABC=∠BCH.
我猜测是求证EF垂直于BC证明:因AB=AC,所以∠B=∠C∠EAF+∠BAC=180度∠B=(180-∠BAC)/2又因为:AE=AF所以∠E=∠AFE所以∠E=(180-∠EAF)/2所以:∠B+
证明:因为BD垂直AC所以角ADB=90度因为CE垂直AB所以角AEC=90度所以角ADB=角AEC=90度因为角A=角A所以三角形ABD和三角形ACE相似(AA)所以AD/AE=AB/AC因为角A=
PE+PF=BD证明:连接AP∵BD⊥AC∴S△ABC=BD×AC/2∵PE⊥AB,AB=AC∴S△APB=PE×AB/2=PE×AC/2∵PF⊥AC∴S△APC=PF×AC/2∵S△APB+S△AP
E是BD与AC的交点证明:延长AD、BC交于F,因为BD平分∠CBA,所以∠ABD=∠CBD,因为AD垂直BD所以∠ADB=∠BDF又BD是公共边所以△ABD≌△FBD所以AD=DF,所以AF=2AD
证明:RT△BDA和RT△CEA中:BA=CA∠BDA=∠CEA=90°∠BAD+∠ABD=90°=∠BAD+∠CAE∠ABD=∠CAE所以:RT△BDA≌RT△CEA≌稍候补充再答:证明:RT△BD
应该是∠ACB=90°吧.这题可以把AD,和BD算出来的.AD:AC=AC:AB,所以AD=144/13BD:BC=BC:AB,所以BD=25/13所以AD:BD=144/25
延长BA,CE交于点F,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∴∠ABD=∠ACF,又AB=AC.∴Rt△ABD≌Rt△ACF.∴BD=CF,∵∠BDA是△BDC的外角,∴∠BDA
连接DE,BE∵角ABC=角ADC=90度,E是AC的中点∴DE=½AC=BE(直角三角形斜边上的中线等于斜边的一半)∵F是BD的中点∴EF⊥BD(等腰三角形三线合一性质)再问:还有第二个问
证明:连接BM、DM∵∠ABC=90,M是AC的中点∴BM=AC/2(直角三角形中线特性)∵∠ADC=90,M是AC的中点∴DM=AC/2∴BM=DM∵N是BD的中点∴MN⊥BD(三线合一)