如图,在△ABC中,角C=2角B.AD是高.求证:AC=BD-CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:46:43
如图,在△ABC中,角C=2角B.AD是高.求证:AC=BD-CD
(2)如图,在三角形ABC中,角C等于100度

角DAB等于角b,设角B为x,那么角DAB也为x,因为,角BAD:角CAB=1:3,所以角CAB为3x,那么角CAD为2x,因为角CDA为△ADB的外角,故角CDA也是2x,所以2x+2x+100=1

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图,在三角形ABC中,角C=90度,角CAB=60度

由题意可知BD=2DE=10cmCD=DE=5cm所以BC=CD+BD=5+10=15cm

如图,在三角形ABC中,角C=2角B,角1=角2,说明AB=AC+CD 如图,在三角形ABC中,角C=2角B,角1=角2

延长AC至E,使CE=CD,连DE则:∠E=∠CDE,而∠ACB=∠E+∠CDE所以,∠E=∠ACD/2=∠B又因为角1=角2,AD=AD所以,△ABD≌△AEDAB=AE而AE=AC+CE=AC+C

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图在三角形ABC中,角C=90°,角A=22.5°.

连接BF,根据图可解∵∠A=22.5°且EF为垂直平分线,∴得∠A=∠FBA=22.5°,∠FBC=45°又∵∠C=90°,且∠CBF=∠CFB=45°∴BF=√2FC又∵BF=AF∴AF=√2FC分

题:如图,在三角形ABC中,角ABC=2角C,B

∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC

如图,已知在直角三角形ABC中,在角C=90°

是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图在三角形ABC中,角ABC等于2个角C,BD平分角ABC,求证AB*BC=AC*CD

证明:∵BD平分∠ABC∴∠ABD=∠DBC∵∠ABC=2∠C∴∠DBC=∠CDB=DC∴∠ADB=∠C+∠DBC=∠C+∠ABD=∠ABD∵∠A=∠A∴△ADB∽△ABC∴BD/BC=AB/AC即C

如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠AED=2∠C,

证明:∵AD是△ABC的角平分线,∴∠BAD=∠EAD,∵∠B=2∠C,∠AED=2∠C,∴∠B=∠AED,在△ABD和△AED中,∠BAD=∠EAD∠B=∠AEDAD=AD,∴△ABD≌△AED(A

如图,在△ABC中,AD是△ABC的角平分线,AC=AB+BD,试说明∠B与2∠C相等的理论依据.

在AC上取一点E,使AE=AB,就可以证明ABD和AED全等.所以BD=ED,根据AC=AB+BD所以ED=EC,所以可以得到三角形EDC那两个底角相等,再根据外角的关系就可以得到了再问:点E是否要与

如图,在△ABC中,∠ABC=∠C=2∠A,BD是角平分线,求∠A与教ADB的度数

因∠ABC=∠C=2∠A,∠ABC+∠C+∠A=180°所以,∠A=36°,∠ABC=∠C=2∠A=72度又因BD是角平分线,所以,∠A=∠ABD=36度所以,∠ADB=108°

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

如图,在Rt△ABC中,角C=90°

过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB

如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.

证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD