如图,在△abc中,角b=90°,AB=22

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:03:21
如图,在△abc中,角b=90°,AB=22
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图在直角三角形ABC中,角C=90度,点A、B、E在同一直线上

∵∠DBE=1/2(∠C+∠CAB)=45+∠DAB∴∠DBE=∠ADB+∠DAB又∵∠ADB+∠DAB=45+∠DAB∴∠ADB=45

如图,在Rt三角形ABC中,∠C=90°,b+c=24 角A-角B=30°,求a、b、c

∵Rt△ABC中,∠C=90°∴∠A+∠B=90°∵∠A-∠B=30°∴∠A=60°,∠B=30°根据特殊直角三角形的性质,得:b=(1/2)c,a=(√3)b∵b+c=24∴(1/2)c+c=24c

如图,在直角三角形ABC中,角C=90度,角B=30度,BC=8

这位同学.请提供一些题目的图片.可发送图片至:t0716@126.com1【解】因为当F与C点重合的时候,D正好在斜边AB上,因此可以通过此时两个三角形的关系求出三角形DEF的边长.当D在斜边AB上的

如图,三角形ABC中,角B=90度

∵AD平分∠BAC,BD⊥AB,DF⊥AC∴BD=DF(角平分线上的点到角两边距离相等)∵DF⊥AC∴∠DFC=90°在Rt△BDE和Rt△FDC中BD=DFED=CD∴Rt△BDE≌Rt△FDC∴B

两道几何题,快!如图,在△ABC中,CD是△ABC的角平分线,角A=2角B,求证,BC=AC+AD如图,在△ABC中.A

延长CA,取点E使AE=AD,连接DE.则∠ADE=∠AED因为∠CDA=∠ADE+∠AED=2∠B所以∠B=∠AED因为∠BCD=∠ACD所以∠CDB=∠CDE又因有公共边CD所以△BCD△CED全

如图,在Rt△ABC中,角C=90°,BC=a,AC=b,求△ABC的内切圆圆O的半径

=1/2(BC+AC-AB)用的是切线的性质再问:好吧..没有过程吗?

如图 在直角三角形abc中 角acb等于90度,角b等

应该是顺时针转如图,ABC为30-60-90度直角三角形,AB=2BC=8,AO=2根号(3)1.当<AOD=30度时,AOD为等腰三角形,<BDE=2<A=60=<B,所以B

题:如图,在三角形ABC中,角ABC=2角C,B

∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC

河南中考,如图 在rt三角形abc中 角c=90度 角B=30度

2≤AD<3∠ABC=30°∴AC=二分之一AB=3要使D到BC的距离最短.就是过D向CB做垂直于E点.此距离是最短的又因为AD=ED设AD的长为x则ED=x,BD=6-x∠B=∠B,∠BED=∠C=

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,AD⊥BC,∠1=∠B,试说明△ABC为直角三角形

根据你的描述,我可以知道你的∠1指的是∠DAC,对么?如果是,则因为AD⊥BC所以∠ADC=90°,所以∠DAC+∠ACD=180°-∠ADC=90°,即∠1+∠ACD=90°,因为∠1=∠B,所以∠

已知,如图,在△ABC中,CD是△ABC的角平分线,∠A=2∠B

证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以

已知 如图 在△ABC中,AD⊥BC,∠1=∠B,求证:△ABC为直角三角形

由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.

如图,在Rt三角形ABC中,角B等于90°,BC大于AB.

BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP

如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.

证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD

如图,在Rt△ABC中,∠B=90°,BC>AB.

(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=