如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,则AC长为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:07:31
如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,则AC长为
已知,如图,在Rt△ABC中,∠C=90°,AC=根号3

∵∠C=90,∠ADC=60,AC=√3∴AD=AC/(√3/2)=√3/(√3/2)=2CD=AC/√3=√3/√3=1∵BD=2AD∴BD=4∴BC=BD+CD=4+1=5∴AB=√(BC

如图 在rt△abc中 ∠c 90,∠a=20°,AB=4,解直角三角形

∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758

如图,在△ABC中,∠C=90°,∠ABD=2∠EBC,AD∥BC,

证明:取ED的中点O,连接AO,∵∠CAD=90°,∴OD=AO=OE,∴∠AOE=2∠D,∵AD∥BC,∴∠EBC=∠D,∴∠AOE=2∠EBC,∵∠ABD=2∠EBC,∴∠ABD=∠AOB,∴AB

如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上

(1)作线段AB的垂直平分线,与AC的交点就是点P(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=

如图,在Rt△ABC中,∠C=90°.根据题回答

(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC

如图,在△ABC中,∠C=90度.

(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=13×

如图,在△ABC中,∠C=90°,内切圆O分别切于点D,E,F.

连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=

如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值

因为是直角三角形,所以AB=√34sinA=BC/AB=(3√34)/34sinB=AC/AB=(5√34)/34再问:能更详细一点吗?再答:AB∧2=BC∧2+AC∧2=34,则AB为√34,sin

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上

1,画线段BC的中垂线PD,与AC的交点就是点P2.∵PD是BC的中垂线∴∠ADP=∠BDP=90°∵∠C=90°∴∠ADP=∠BDP=∠C∵PC=PDAP=PB∴RT⊿APD≌RT⊿BPD≌RT⊿B

如图,在Rt△ABC中,∠C=90,AC=BC,AD平分∠BAC

作DE垂直AB∵△ABC是等腰直接三角形∴∠B=45°∴△CDE是等腰直接三角形∴DE=BE∵AD是角平分线∴∠CAD=∠EAD∵在RT△ACD和RT△AED中∠CAD=∠EAD,AD是公共边∴由AS

如图,在Rt△ABC中,∠C=90°,AC=6,cotB4/3

(1)cotb等于bc比ac等于4:3也就是说bc等于8(2)作PD‖BC设AP=BQ=x则QC=PC=8-x,有A字形相似得PD=4/5x,AD=3/5xCD=6-(3/5)x三角形PCD中用勾股定

如图,在Rt△ABC中,∠c=90°,已知AB+BC=10cm

应该时AC+BC=10吧AB^2=AC^2+BC^2=(AC+BC)^2-2AC*BC=100-2AC*BC因为AC+BC≥2√(AC*BC)所以AC*BC≤25,即AB^2≥100-50=50当AC

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D

(1)作DE⊥AB于点E∵BC=8,BD=5∴CD=3∵AD平分∠BAC∴DE=DC=3即:D到AB的距离等于3(2)作DE⊥AB于点E∵AD平分∠BAC,DE=6∴CD=DE=6∵BD:DC=3:2

如图,在Rt△ABC中,角C=90°

过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-