如图,在△abc中,E,F分别是AC.BC的终点,AF与BE交于点O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:24:44
(1)①②⇒③,正确;①③⇒②,错误,不符合三角形的判定;②③⇒①,正确.(2)先证①②⇒③.如图.∵AD平分∠BAC,DE⊥AB,DF⊥AC,AD=AD,∴Rt△ADE≌Rt△ADF.∴DE=DF,
(1)连接EF,AEEF为△ABC中位线,所以EF‖AB且EF=AB/2=AD所以四边形ADFE为平行四边形所以AF与DE互相平分(2)因为四边形ADFE为平行四边形所以DF=AE=BC/2=2
证明:∵D、E、F分别是△ABC三边的中点,∴DE∥.12AC,EF∥.12AB,∴四边形ADEF为平行四边形. 又∵AC=AB,∴DE=EF.  
证明:(1)AB=AC,∠BAC=90°,则:∠ABC=∠ACB=45°,∠ABE=∠ACF=135°.∠EAF=135°,则:∠EAB+∠CAF=45°;又∠EAB+∠E=∠ABC=45°.则∠E=
解题:因为AD∥BC,所以∠3=∠2,因为BF平分∠ABC,所以∠1=∠2,所以∠1=∠3,所以AB=AF2)因为AF∥BC,所以△BCE和△AFE相似,所以AE/EC=AF/BC,因为AB=AF=3
(1)证明:AB=AC∴∠B=∠C.在△DBE和△ECF中{BE=CF∠B=∠CBD=EC,∴△DBE≌△ECF(SAS).∴DE=EF.∴DEF是等腰三角形.∠A=40°,∠B=∠C,∴∠B=∠C=
(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
存在.角BDE=180-角B-角BED角FEC=180-角DEF-角BED因为角B=角DEF所以角BDE=角FEC又因为AB=AC所以角B=角C又因为BD=CE所以根据角边角三角形FEC全等于三角形B
连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=
(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF(垂直于同一直线的两直线互相平行);(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB
(1)证明:因为△ABC是等边三角形,所以AB=BC=CA,∠BAC=∠ACB=∠ABC=60°在△ACE和△BAD中,AB=AC,∠BAC=∠ABC,BD=AE.所以△ACE≌△BAD(SAS)所以
你想学如何发图就找我吧,
de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.
1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠
要证DE=DF,只需证△AED全等于△AFD.要证RT△AED全等于RT△AFD.现已知AD=AD,∠EAD=∠FAD,故RT△AED全等于RT△AFD,此题得证.证明:∵AD=AD(公共边)∠EAD
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
△DEF与△ABC相似∵E、F分别为AB、AC上的中点∴EF‖BC∴△AEF∽△ABC设EF与AD交于O则AO=DO∵AD⊥BC∴AD⊥EF∴AE=DE,AF=DF∵EF=EF∴△AEF≌△DEF∴,
E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行
连结EO、DO、DE因为∠B=50°∠C=70°所以∠A=60又因为AB、AC是圆切线所以∠AEO=∠ADO=90°所以∠DOE=120°又因为∠DPE为DE所对的圆周角所以∠DPE=1/2∠DOE所