如图,在△abc中,def分别是各边的中点,ah是高,链接df的方法求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:25:47
如图,在△abc中,def分别是各边的中点,ah是高,链接df的方法求证
如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

已知;如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.求证;△ABC≌△DEF

证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).

已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

如图,在△ABC中,点D,E,F分别是各边的中点,已知△BAC的面积为80,求△DEF的面积.

∵点D,E,F分别是各边的中点∴四个小三角形全等∴SΔDEF=SΔABC/4=80/4=20再问:能不能再详细点啊再答:∵D、E分别是AB、AC的中点∴DE∥BC且DE=BC/2∴ΔADE∽ΔABC且

如图,矩形ABCD中,点E,F分别在 AB,BC上,△DEF为等腰三角形,∠DEF=90°,AD

4再问:过程再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根据勾股定理,DE平方=EF平方,就可算出AD=4再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF.求证:△DEF是等腰三角形.

证明:∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB=AC,∴∠C=∠B.又∵CE=BD,∴△BDE≌△CEF.∴DE=FE.所以△DEF是等腰三角形.

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF,求证△DEF为等腰三角形

因为∠DEC=∠B+∠BDE(三角形的一个外角等于其它两个内角之和)又因为∠DEC=∠DEF+∠FEC所以∠B+∠BDE=∠DEF+∠FEC所以∠BDE=∠FEC(∠DEF=∠B)所以△DBE与△EC

如图,已知长方形ABCD中,点E.F分别在AB.BC上,△DEF为等腰直角三角形,∠DEF=90º.AD+CD

因为△DEF是等腰直角三角形,所以DE=EF,∠DEF=90°,那么∠DEA+∠BEF=90°,因为△BEF是直角三角形,那么∠BEF+∠BFE=90°,所以∠DEA=∠BFE,另外,∠DAE=∠EB

如图,在△ABC中,AB=AC.D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B.求证:△DEF是等

AB=AC∠C=∠B……①∠DEC是外角,∠DEC=∠B+∠BDE因为∠DEF=∠B所以∠FEC=∠BDE……②又因BD=CE……③△BDE≌△CEF所以DE=EF

如图,在△ABC中,DEF分别是BC、AD、CE的中点,且S△ABC=4平方厘米;,则S阴影= (平方厘米)

答案:1平方厘米.看图,由几何关系可以轻松得到答案.由于E为AD中点,那么DE=(1/2)*AD,所以S(BCE)=(1/2)*S(ABC)=2平方厘米;又由于F为CE的中点,那么EF=(1/2)*C

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,说明△DEF为等边三角

∵在等边△ABC中∴∠A=∠B=∠C=60°AB=BC=AC∵AD=BE=CF∴AB-AD=BC-BE=AC-CF即BD=CE=AF∵∠A=∠B=∠C=60°AD=BE=CFBD=CE=AF∴△ADF

有一块直角三角尺DEF,放在△ABC上,如图,△DEF的两条直角边DE、DF分别经过B、C两点,在△ABC中,∠A=50

(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=130°-90°=40°.故∠ABD+∠ACD为40°;(2)如图所示.∵∠A

如图,在△ABC中,AD为BC边上的高,E、F分别为AB、AC上的中点,△DEF与△ABC相似吗

△DEF与△ABC相似∵E、F分别为AB、AC上的中点∴EF‖BC∴△AEF∽△ABC设EF与AD交于O则AO=DO∵AD⊥BC∴AD⊥EF∴AE=DE,AF=DF∵EF=EF∴△AEF≌△DEF∴,

如图在三角形ABC中,求做等边三角形DEF,使它的三个顶点分别在三角形ABC的三条边上,且EF平行于BC

向ABC外侧做等边三角形BCG,连接AG交BC于D,过D引BG的平行线交AB于E,引CG的平行线交AC于F,那么DEF即为所求.

如图,在三角形abc中,点def分别在边ab,bc,ca上,四边形decf是平行四边形,若ad=bd求be=ec

DECF是平行四边形,DE//CF,、即DE//AC因为AD=BD,D是AB的中点.DE是三角形ABC中,AB,BC边上的中位线,所以.E是BC的中点BE=CE

如图,在三角形ABC和三角形DEF中,AG,DH分别为高,且AB=DE,AG=DH,∠BAC=∠EDF.求证:△ABC≌

证明:∵AG⊥BC,DH⊥EF∴∠AGB=∠DHE=90∵AB=DE,AG=DH∴△ABG≌△DEH(HL)∴∠B=∠E∵∠BAC=∠EDF∴△ABC≌△DEF(ASA)数学辅导团解答了你的提问,理解

如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C

已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是边BC边上的高 求证:∠DHF=∠DEF

D、E、F分别是各边的中点,所以DE//AF,AD//FE,所以∠DAF=∠DEF连结DF,AH是边BC上的高,所以AD=DH,AF=HF,所以△ADF全等△DHF,所以∠DHF=∠DAF所以∠DHF