如图,在△ABC中,AD⊥NC于点D,BE⊥AC于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:13:03
(1)证明:∵AB=AC且AD⊥BC∴AD平分∠BAC即∠BAD=∠CAD证明△ABE全等于△ACE(利用AB=AC,∠BAD=∠CAD,AE=AE)∴BE=CE(2)证明:∵BF⊥AC且∠BAC=4
∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD
延长CD交AB于点E∵AD平分∠BAC∴∠BAD=∠CAD∵CD⊥AD∴∠ADE=ADC∵AD=AD∴⊿ADE≌⊿ADC﹙ASA﹚∴∠AED=∠ACD∵∠AED是△BCE的外角∴∠AED>∠B即∠AC
证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A
1:2过D点做DE平行于BN交AC于E做一条辅助线就行了啊
因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端
用相似三角形再问:请详细点说明,谢谢再答:把AD*AD=BD*DC化成AD/BD=CD/AD,又ADC和BDA是直角。△ADB和△CDA相似,角C和角BAD相等,C+DAC=90=BAD+DAC.即角
以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE
∵AD⊥BC∴BD²=AB²-AD²=13²-5²=144=12²∴BD=12∴DC=BC-BD=24-12=12∴BD=DC又∵AD⊥BC
证明:连接AN并延长,交BC的延长线于点E,(1分)∵∠1=∠2,DN=NC,∠D=∠3,∴△ADN≌△ECN,(3分)∴AN=EN,AD=EC,(4分)又∵AM=MB,∴MN是△ABE的中位线,∴M
可以∠BAC90°∠ABC60°∠ACB30°
证明:如图,延长CE交AB于G,∵AD为角平分线,∴∠EAG=∠EAC,∵CE⊥AD,∴∠AEG=∠AEC=90°,在△AGE和△ACE中,∠EAG=∠EACAE=AE∠AEG=∠AEC=90°,∴△
△AEO全等于△ACO,(根据角边角)因此EO=CO,AD是EC的垂直平分线.进而得到ED=CD.所以角DEC=角DCE,EF平行于BC,因此角FEC=角DCE.故角DEC=角FEC.即EC平分∠FE
选AAB=BF证明:∵∠BAC=90°,AD⊥BC∴∠BAD+∠ABC=∠C+∠ABC=90°∴∠BAD=∠C∵EF‖AC∴∠C=∠EFB∴∠EFB=∠EAB∵∠ABE=∠FBE,BE=BE∴△ABE
有题意,有AB^2-BD^2=AC^2-CD^2有(AB+BD)(AB-BD)=(AC+CD)(AC-CD)而AB+BD=AC+CD,有AB-BD=AC-CD将上面两个式子相加有AB=AC,既是等腰三
根据你的描述,我可以知道你的∠1指的是∠DAC,对么?如果是,则因为AD⊥BC所以∠ADC=90°,所以∠DAC+∠ACD=180°-∠ADC=90°,即∠1+∠ACD=90°,因为∠1=∠B,所以∠
证明:∵AB=AC,AM是BC边上的中线,∴AM⊥BC.…(2分)∴AM垂直平分BC.∵点N在AM上,∴NB=NC.…(4分)
由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.
1.∵AD⊥BC于D,BD=ADFD=CD.∴△BFD≌△ACD∴∠FBD=∠CAD2.因为∠FBD=∠CAD,∠BFD=∠AFE所以△BFD∽△AFE故∠BDF=90°=∠AEF,所以BE垂直AC3
(1)因为角ABC=30°,角ACB=60°,所以角BAC=90°,又因为AE平分角BAC,所以角EAC=45°,AD⊥BC,所以角ADC=90°,角DAC=30°,那么角DAE=45°-30°=15