如图,在△ABC中,AC⊥BC,D是BC延长线上的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:20:12
∵AB=AC∠BAC=120°∴∠B=∠C=30°又∵BD=AD∴∠B=∠BAD=30°∴∠ADE=60°又∵AE=CE∴∠C=∠EAD=30°∴∠DEA=60°=∠AED∴△ADE是等腰三角形
(1)证明:∵AB=AC且AD⊥BC∴AD平分∠BAC即∠BAD=∠CAD证明△ABE全等于△ACE(利用AB=AC,∠BAD=∠CAD,AE=AE)∴BE=CE(2)证明:∵BF⊥AC且∠BAC=4
因为AB=AC所以三角形是等腰三角形,因为等腰三角形三线合一,所以AD⊥BC再问:简单明了就你了!!!
解题思路:探讨解题过程:请看附件,同学你好,题目是否缺少条件啊,根据条件第一个结论是不成立的啊,是不是我附件中的题目啊。不是的时候请再看看题目是否少条件,应该是一个等腰三角形才行。最终答案:略
⑴设AP=x,则3×4/4=(3x/4)×x/2,得到x=2√2.当AP为2√2时,S四边形BCPQ=S⊿APQ.⑵AD(高)=3×4/5=2.4,(2.4-3x/4)/2.4=(3x/4)/5,x=
解题思路:等腰三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
证明:∵PA⊥面ABC,BC⊂面ABC,∴PA⊥BC∵AC⊥BC,PA∩AC=A∴BC⊥面PAC∵BC⊂面PBC∴面PBC⊥面PAC.
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
证明:延长DE交BC于F.因AB=AC,所以∠C+1/2∠BAC=90度.因∠BAC=∠DAE+∠EAD,AD=AE,所以∠DEA=1/2∠BAC,所以∠CEF=∠BAC,所以∠CEF+∠C=90度,
AB²=AD²+BD²,AC²=AD²+DC²,两式相减即得AB²-AC²=BD²-DC²,及时采纳
过A作AE⊥BC交于E因为AB=AC所以角ABC=角CBE=CE=1/2BC因为BD⊥AC在RT三角形BDC与RT三角形ACE中因为角C的公共角所以RT三角形BDC∽RT三角形ACE则BC/AC=CD
选AAB=BF证明:∵∠BAC=90°,AD⊥BC∴∠BAD+∠ABC=∠C+∠ABC=90°∴∠BAD=∠C∵EF‖AC∴∠C=∠EFB∴∠EFB=∠EAB∵∠ABE=∠FBE,BE=BE∴△ABE
首先知道∠cbf=90°,可得到∠abc=45°=∠fbg先证明∠ace=∠adc,可得到∠adc=∠cfb在证明△acd≌△cbf,可得到bf=cd,可得到bf=bd最后利用∠fbg=∠abc=45
有题意,有AB^2-BD^2=AC^2-CD^2有(AB+BD)(AB-BD)=(AC+CD)(AC-CD)而AB+BD=AC+CD,有AB-BD=AC-CD将上面两个式子相加有AB=AC,既是等腰三
因为AB=AC所以∠B=∠C因为∠B+∠C+∠BAC=180°所以∠C+∠BAC/2=90°因为AE=AF所以∠E=∠AFE因为∠BAC=∠E+∠AFE所以∠AFE=∠BAC/2因为∠AFE=∠CFD
(1)作AE⊥BC交BC于点E,∵AB=AC,∴BE=EC=3,在Rt△AEC中,AE=92−32=62,∴Sin∠C=AEAC=629=223;(2)在Rt△BDC中,Sin∠C=BDBC,即BD6
过点A作AD⊥BC于D∵AB=AC=13,AD⊥BC∴BD=CD=BC/2=5∴AD=√(AB²-BD²)=√(169-25)=12∴S△ABC=BC×AD/2=10×12/2=6
解答提示:如图,设外接圆圆心为O,连接AO并延长交BC于D,连接OB因为三角形ABC是等腰三角形所以AD⊥BC,BD=CD=6根据勾股定理得AD=8设OA=OB=R,则OD=8-R由勾股定理得:BD^
/>∵AC=8BC=6∴由勾股定理得到:AB=10∴△ABC面积=AB*CD/2=AC*BC/2=8*6/2=24CD=48/AB=48/10=4.8∴AD=根号(8^2-4.8^2)=根号(40.9