如图,在△ABC,△ACE中,∠BAC=∠DAE=90°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:07:23
如图,在△ABC,△ACE中,∠BAC=∠DAE=90°
如图,在△ABC中,以AB、AC为边向外做等边三角形△ACE和等边三角形△ABD,连接CD、BE

答:是定角.理由:因为三角形ACE和三角形ABD是等边三角形所以,角DAB=角CAE=叫DBA=60度DA=AB,AC=AE所以角DAB+角BAC=角CAE+角BAC即角DAC=角BAE所以三角形DA

如图在等腰三角形ABC中AB=AC,D是AB上的动点,作等腰△EDC相似于△ABC,求证; △ACE相似于△BCD

证:因为等腰△EDC相似于△ABC所以∠ECD=∠ACBEC/AC=DC/BC即EC/DC=AC/BC因为∠ECA=∠ECD-∠ACD∠DCB=∠ACB-∠ACD所以∠ECA=∠DCB因为EC/DC=

如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由

证明:∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CD平分∠ACE∴∠DCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BD平分

如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.

证明:∵∠BAC=∠DAE,…(3分)∴∠BAC+∠CAD=∠DAE+∠CAD,即∠EAC=∠DAB,…(4分)在△AEC和△ADB中AD=AE∠DAB=∠EACAB=AC,∴△AEC≌△ADB(SA

如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF

因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边

已知:如图,在△ABC中,以它的边AB,AC分别在形外作等边三角形ABD,ACE,连接BE,CD,求证:BE=CD

三角形ABD,ACE为等边三角形则AB=AD,AE=AC,角CAD=角BAE,三角形ABE与三角形ADC全等,则BE=CD

已知,如图,△ABC中,∠BAC=90° AH⊥BC 于H ,以AC为边在Rt△ABC外做等边△ABD和△ACE

没有AC等于AB的条件,又怎能以AC为边做等边△ABD和△ACE呢再问:已知,如图,△ABC中,∠BAC=90°AH⊥BC于H,以AC和AB为边在Rt△ABC外做等边△ABD和△ACE全题就是这样的。

如图,已知在△ABC中,BD平分∠ABE,CD平分△ABC的外角∠ACE,BD、CD相交于点D

呃.十多年前的了.多快忘了.第一个简单.因为:∠A+∠ABD=∠D+∠ACDCD平分△ABC的外角∠ACEBD平分∠ABE∠ACD=1/2(∠A+2∠ABD)所以:∠A+∠ABD=∠D+1/2∠A+∠

如图,在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于点D

AC、BD交点为F∠DFC=∠FBC+∠ACB=∠ABC/2+∠ACB∠FCD=∠ACE/2=(∠A+∠ABC)/2∠A+∠ABC+∠ACB=180°∠D+∠DFC+∠FDC=180°∠D+(∠A+∠

1.①如图,在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD交于点D,图1中∠A=40°,图2

一1.图一:∠D=20°图二:∠D=45°图三:∠D=63°2.∠A=2∠D3.∠A5=3°二∠1=140°∠2=25°∠3=15°a=2(∠2+∠3)=80°四1.∠P=(30°+40°)÷2=35

如图,在△ABC中,点D、E在AB上,∠ACB=100°,∠ACE=∠AEC,∠BCD=∠BDC

∠DCE=∠BCD-∠BCE=∠BCD-(∠AEC-∠B)=∠BDC-∠AEC+∠B=∠BDC-∠ACE+∠B=∠BDC-(∠ACD+∠DCE)+∠B=∠BDC-∠ACD-∠DCE+∠B=∠A-∠DC

如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边

证明:延长AM到F,使MF=AM,连接BF,CF(如图)∵BM=CM,AM=FM,∴四边形ABFC为平行四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠D

已知如图在△ABC中,AB=AC.点D,E在BC上且AD=AE.求证△ABD全等△ACE

证明:∵AB=AC,∴∠B=∠C∵AD=AE,∴∠ADE=∠AED,又∵点D、E在BC边上,∴∠ADB=∠AEC,在△ABD和△ACE中,∠ADB=∠AEC∠B=∠CAB=AC∴△ABD≌△ACE

如图,在△ABD和△ACE中,有下列四个等式:

已知:①AB=AC②AD=AE③∠1=∠2结论:④BD=CE理由:∵AB=ACAD=AE∠1=∠2又∵∠CAD=∠DAC∴∠1+∠CAD=∠2+∠DAC∠BAD=∠CAE∴△ABD≌△AEC(SAS)

如图,在△ABC中,AB=AC,点E在高AD上,求证△ABE≌△ACE

证明:∵AB=AC∴ΔABC是等腰Δ∵等腰Δ三线合一∴AD平分∠BAC∴∠BAD=∠CAD又∵CA=BAAE=AE∴ΔABE≌ΔACE(SAS)如仍有疑惑,欢迎追问.祝:学习进步!

如图,△ABC中,点E在BC的延长线上,BD是∠ABC的角平分线,CD为∠ACE的角平分线

(1)∵CD平分∠ACE∴∠ACD=∠ECD∵∠ECD=∠D+∠CBD∴2∠ECD=2∠D+2∠CBD∴∠ACE=2∠D+2∠CBD∵BD平分∠ABC,∠ACE=∠A+∠ABC∴2∠D=∠A(1)当∠

如图,在△ABC和△ADE中,AB=AC,AD=AE,若BD=CE,求证∠ABD=∠ACE

证明:在△ABD与△ACE中,∵AB=ACBD=CEAD=AE∴△ABD≌△ACE(SSS)∴∠ABD=∠ACE

如图,在△ABC中,CD=CE,2AD=3AE,2BD=3CD,是说明三角形ABD相似与三角形ACE?

CD=CE∠CED=∠CDE所以外角∠ADB=∠AEC2AD=3AE,2BD=3CD左边除以左边,右边除以右边AD/BD=AE/CD又因为CD=CEAD/BD=AE/EC角相等,对应边成比例所以三角形

  如图,在等边△ABC中,∠ACE=∠ABD,且CE=BD,联结AE、DE,说明DE//AB

证明:因为三角形ABC是等边三角形所以角BAC=60度AB=AC因为角ABD=角ACEBD=CE所以三角形ABD和三角形ACE全等(SAS)所以角BAD=角CAEAD=AE所以三角形ADE是等腰三角形