如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:01:49
∵∠C=90,∠ADC=60,AC=√3∴AD=AC/(√3/2)=√3/(√3/2)=2CD=AC/√3=√3/√3=1∵BD=2AD∴BD=4∴BC=BD+CD=4+1=5∴AB=√(BC
(1)连接EF,AEEF为△ABC中位线,所以EF‖AB且EF=AB/2=AD所以四边形ADFE为平行四边形所以AF与DE互相平分(2)因为四边形ADFE为平行四边形所以DF=AE=BC/2=2
证明:过点D做AB的垂线∴CD=DE易证△ACD和ADE全等所AC=AE∵AC=BC,且∠C=90∴∠CAB=∠B=45在△DBE中∵∠EDB=180-∠B-∠DEB∴∠EDB=45∴EB=DE∴CD
4再问:要详细一点的、可以么、再答:MN=BN+AM-AB=BC+AC-AB=5+12-13=4
证明:∵∠ACB=90°,CD垂直AB于D∴∠ADC=90,∵∠DAC=∠CAB∴△DAC∽△CAB,则BC:AC=DC:DA∵在RT△ADC中,DE⊥AC∴DC²:DA²=CE:
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
选c可以用排除法,AC/DC肯定大于1,但小于2所以ABD就被淘汰了结果就是C了
sinA=2/√13,cosA=3/√13,tanA=2/3如果本题有什么不明白可以追问,另外发并点击我的头像向我求助,请谅解,
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动
∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R
作DE垂直AB∵△ABC是等腰直接三角形∴∠B=45°∴△CDE是等腰直接三角形∴DE=BE∵AD是角平分线∴∠CAD=∠EAD∵在RT△ACD和RT△AED中∠CAD=∠EAD,AD是公共边∴由AS
你要求什么啊?
(1)cotb等于bc比ac等于4:3也就是说bc等于8(2)作PD‖BC设AP=BQ=x则QC=PC=8-x,有A字形相似得PD=4/5x,AD=3/5xCD=6-(3/5)x三角形PCD中用勾股定
∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△
选AAB=BF证明:∵∠BAC=90°,AD⊥BC∴∠BAD+∠ABC=∠C+∠ABC=90°∴∠BAD=∠C∵EF‖AC∴∠C=∠EFB∴∠EFB=∠EAB∵∠ABE=∠FBE,BE=BE∴△ABE
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
作DE⊥AB于点E设DE=1,则AE=1∴AD=√2∴AC=2√2∴AB=4∴BE=3∴BD=√10∴sin∠ABD=DE/BD=1/√10=√10/10
我在《求解答网》帮你找到原题哦,以后数理化你要是有问题的话,都可以到求解答网来.记得采纳我啊)