如图,圆点O的直径FD垂直于弦AB于点H

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:48:48
如图,圆点O的直径FD垂直于弦AB于点H
ab是圆o的直径弦cd垂直于ab于点g点f是cd上一点满足cf/fd=1/3连接af并延长交圆o于点e连结adde若cf

因为AF=3GF=2所以AG=√5tan∠ADG=AG/GD=√5/4又因为∠ADG=∠E所以tan∠E=√5/4

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图ab为圆o的直径弦cd垂直ab垂足为点e,eg垂直bc于g,求证ah等于dh

因为∠A=∠C(同弧的圆周角相等)因为∠BEC=90(AB⊥CD)EG⊥BC所以∠C=∠GEB=∠HEA(对顶角)所以∠A=∠HEA所以AH=HE所以同理可证明DH=HE所以AH=DH

如图,AB是圆O的直径,BC是圆O的弦,OD垂直于BC于点E,交弧BC于点D.(1)请写出三个不同类型的正确结论;

(1)E为BC中点,D为弧BC中点,角DOB+角CBO=90°(2)连接AC角ACB=90°β+CAB=90°(1)CAB为弧CB所对圆周角,α为弧CAB所对圆周角α+CAB=180°(2)(2)-(

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

已知如图圆O中 AB是圆O的直径 CD是弦 点EF在AB上 EC垂直于CD FD垂直于CD求AE=BE

应是证明AE=BF因,EC⊥CD,FD⊥CD,所以,EC//FD,过O作垂直CD的半径交CD于M,则OM//EC//FD,DM=DM,(垂直弦的径平分弦),所以,EO=FO,又因AO=BO,AO-EO

如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF垂直于AD.

⊙O的直径AB垂直弦CD于点E,则CD=2CE;在直角△OED中,易证∠ODC=30°,就可以求出DE的长,进而求出CD的长.//-----------------------------------

如图,AB是圆O直径,OD垂直弦BC于点F,且交圆O于点E,若∠AEC=∠ODB.判断直线BD和圆O的位置关系,并给出证

因为∠AEC=∠ODB∠AEC=∠ABC所以∠ODB=∠ABC又因为OD垂直弦BC于点F所以∠0FB=90°所以∠OBD=180°-∠0DB-∠DOB=∠0FB=90°所以BD与圆O垂直

如图,三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC于点D,角BAE于角CAD相等吗?

相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,AB是圆O的直径,AC是弦,角BAC的平分线AD交圆O于点D,DE垂直于AC,交AC的延长线于点E.

连接OD,BC相交于点F∵AD是角平分线∴D是弧BC的中点∴OD⊥BC∵AB是直径∴∠ACB=90°∴四边形CEDF是矩形OF是△ABC的中位线∴OF=1.5∴DF=2.5-1.5=1∴CE=1∴AE

如图,AB为圆O的直径,AC为弦,角BAC的平分线AD交圆O于D点,DE垂直于AC,交AC的延长线于点E,OE交AD于F

证明:连接OD,AD因为AB是圆O的直径所以角ADB=90度所以AD是三角形ABC的垂线因为角BAC=90度AB=AC所以三角形ABC是等腰直角三角形所以AD是等腰直角三角形ABC的垂线,角平分线所以

如图,AB为圆O的直径弦CD垂直于AB,垂足为点E,CF垂直于AF,且CF=CE

(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.

如图,已知:ABCD是圆内接四边形,EB是圆O的直径,且EB垂直AD,AD与BC的延长线交于F,求证:AB/FD=BC/

证明:连接BDAD⊥EB得AB=BD∠BDA=∠BAD∠FCD=∠BAD(圆内接四边形性质)∴∠BCD=∠BDF(等角的补角相等)∠CBD是公共角,∴△BCD∽△BDF∴DC:DF=BC:BDAB=B

如图在三角形ABC中,AB=AC,以AB为直径作圆O交BC于点D ,交AC于点G,过D 作DF垂直于AC于F,延长FD交

1)直线EF与圆O相切.证明:连接OD∵AB=AC,OB=OD∴∠B=∠C=∠OBD∴OD//AC∵EF⊥AC∴EF⊥OD因此,EF与圆O相切连接ADBD=CD=5AD=√(AB²-BD&#

如图,已知AB为圆O的直径,BD为圆O的切线,过点B的弦BC垂直OD交圆O于点C,垂直为M.当BC等于BD等于6cm时,

证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

1.如图,已知圆O的直径AB垂直于弦CD于点E,过点C作CG平行于AD交AB的延长线于点G,连接CO并延长交AD于点F,

1、(1)是,CG平行于AD,角FCG和角DFC是同旁内角,角FCG=180度-角DFC=90度再问:那第一题的第二问呢?再答:(2)根据角角边定理,三角形AFO和CEO全等,OED和OEC全等,所以

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM