如图,圆o的直接AB=16,P为OB的中点,弦CB与AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:13:52
1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C
过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O
连接OD在直角三角形OPD中,OD=1/2AB=5,OP=根号2,所以PD=根号(OD2-OP2)=根号23根据垂径定理,CD=2PD=2根号23有条件没有用到,你确定题没错吧.解法就这样.
利用相交弦定理∵AB=20AP:PB=1:4∴AP=16,PB=4∵AB⊥CD,AB是直径∴P是CD中点(垂径定理)∵AP*PB=CP*PD(相交弦定理)∴PC=PD=8CD=16
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC
连接OC,OD,做O点向CD做垂线,垂点为E,OD=OC=8,则三角形OCD为等腰三角形,故E为CD的中点,角OPC为30度,由此可计算OE=2,OC为半径为8,CE等于OC的平方减去CE的平方,开根
(1)证明:连接OC、OD,∵∠ADC=45°,∴弧AC的度数是90°,∵AB为直径,∴弧BC的度数也是90°,∴弧AC=弧BC,∵OC为半径,∴OC⊥AB,∴∠COE=90°,∴∠C+∠OEC=90
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
先自己画个图,标准点,再看题目
证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF
同弧的圆周角相等,证明三角形ACP相似BPD
延长po交圆于c,连接mc显然pon相似于pmc所以po/pm=pn/pc设ab=x则po=x/2pc=xpm=9带入x=3根下10
过O向CD作OE⊥CD,连结OD在RT三角形OPE中因为P是OB中点所以OP=4因为角CPO=30度所以OE=2因为AB=8所以OD=8在RT三角形OED中DE=2根15因为OE经过圆心O且OE垂直C
过O向CD作OE⊥CD,连结OD在RT三角形OPE中因为P是OB中点所以OP=4因为角CPO=30度所以OE=2因为AB=8所以OD=8在RT三角形OED中DE=2根15因为OE经过圆心O且OE垂直C
(1)连接BC∵AB是直径∴∠ACB=90º∵AB=2、AC=√3∴BC=1∴∠A=30º(2)连接OC∵CD⊥AB、AB是直径∴∠BOC=2∠A=60º∴B⌒C=60/
(你在图上连一下辅助线)过O作OE⊥CD与E,OF⊥AB与F,再连接OP因为:AB=CD所以:OE=OF,DE=CD/2,BF=AB/2所以:DE=BF,又OP=OP所以:△OPE≌△OPF(HL)所