如图,圆O的直径FD⊥弦AB于点H
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:29:07
因为AF=3GF=2所以AG=√5tan∠ADG=AG/GD=√5/4又因为∠ADG=∠E所以tan∠E=√5/4
(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等
应是证明AE=BF因,EC⊥CD,FD⊥CD,所以,EC//FD,过O作垂直CD的半径交CD于M,则OM//EC//FD,DM=DM,(垂直弦的径平分弦),所以,EO=FO,又因AO=BO,AO-EO
∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
证明:连接AD、AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠ACD、∠AMD所对应圆弧都是劣弧AD∴∠AMD=∠ADC∵∠NMC是圆内接四边形ADCM的外
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
1连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD∴E 为弧DB的中点2、在△COB
证明:连接BDAD⊥EB得AB=BD∠BDA=∠BAD∠FCD=∠BAD(圆内接四边形性质)∴∠BCD=∠BDF(等角的补角相等)∠CBD是公共角,∴△BCD∽△BDF∴DC:DF=BC:BDAB=B
AD=6,AB=10,三角形ADB为直角三角形,角D为直角故,BD=8AB*Dc=AD*BD,AD=6,AB=10,BD=8故Dc=4.8DF=2Dc故DF=9.6
1)直线EF与圆O相切.证明:连接OD∵AB=AC,OB=OD∴∠B=∠C=∠OBD∴OD//AC∵EF⊥AC∴EF⊥OD因此,EF与圆O相切连接ADBD=CD=5AD=√(AB²-BD
⑴过OH⊥CD于H,则CH=DH,∵CE⊥CD,DF⊥CD,∴CE∥OH∥DF,∴OE/OF=CH/CH=1,又OA=OB,∴AE=BF.⑵不一定成立,因为E或F不一定在直径AB上,可能在其延长线上.
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
证明:连接OD,如右图所示,∵AC=BC,∴∠A=∠ABC,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB=∠A,∴OD∥AC,又∵DF⊥AC,∴∠CFD=90°,∴∠ODE=90°,∴OD⊥EF,∴
2)∵AB=6,DE=4∴OD=OA=3OE=√(OD²+DE²)=5AE=OE-OA=2∵AH//OD∴AH/OD=AE/OEAH=AE*OD/OE=6/5∵∠ABC=∠C∴AC
OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
连接OC∵AB为圆O的直径,弦CD⊥AB于E∴CE=½CD∵AB=20,EB=2∴OC=OB=10,OE=8∴OC²=CE²+OE²∴CE=√﹙100-64)=