如图,圆o是三角形的外接圆,A没事圆o的直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:11:33
如图,圆o是三角形的外接圆,A没事圆o的直径
如图,圆O是三角形ABC的外接圆,点I是三角形ABC的内心,延长AI交圆O于点D,连接BD,求证BD=ID

我也是刚做这道题,搜了好久也没搜到答案,不过总算琢磨出来了,希望这个答案能帮助更多的人

如图,圆O为三角形ABC的外接圆.且AB=AC,过点A的直线AF交圆O于点D,交BC延长线于点F,DE是BD的延长线,连

(1)证明:根据切割线定理可知:FD•FA=FC•FB∵∠F=∠F,∴△FDC∽△FBA,∴∠CDF=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB(所对的

如图,圆O是三角形ABC的外接圆,AD是圆O的直径,连接CD,若圆O的编辑r=2分之3,AC=2,则cosB的值为

三分之根号5再问:求过程再答:别忘了赞一个。因为弧ac,所以∠b等于∠d。因为ad是直径,所以∠dca是90度,由勾股得,dc为根号五,cos∠d等于ad分之dc等于三分之根号五。

如图 三角形ABC中 AH⊥BC于H 圆O是三角形ABC的外接圆 AD为圆O的直径 求证角BAD=角CAH

证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA

如图,圆O是三角形ABC的外接圆,AD是BC边上的高,若BD=8,AD=3,求圆O的面积

题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系

三角形ABC是锐角三角形,圆O是三角形ABC的外接圆,角A=角CBD,直线BD与圆O相切吗?为什么?

证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

如图已知圆o是三角形abc的外接圆,若角a等于55度,则角boc等于多少度.

角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°

如图,圆O是△ABC的外接圆,过A,B两点分别作⊙O的切线PA,PB交于一点P,连接OP

连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。

已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是

证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF

如图,圆O是三角形ABC的外接圆,CB=BD,AB是角CAD的角平分线,求证点D是圆上一点

反证法假如D不圆上,因为AB是角CAD的角平分线,所以BC不等于BD,与CB=BD相矛盾所以点D是圆上一点

如图,圆O是三角形ABC的外接圆,CD是三角形ABC的高,AD等于3,BD等于8,CD等于6,求圆O直径

∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过

如图已知圆O为三角形abc的外接圆,∠A=30°,bc等于2cm,求圆o的直径(初三知识)

连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm

如图,圆O是三角形ABC的外接圆,AD是圆O的直径,连接CD,若圆O的编辑r=2分之3,DC=2,则sinB的值是?

在圆O中,∠B=∠D,所以sin∠B=sin∠D=AC/AD,因为AD=2r=3,CD=2,所以AC=√(AD^2-CD^2)=√5,所以sin∠B=√5/3

如图,AB是圆O的直径,过A作圆O的切线,AC=AB,求证:(1)CD是三角形ADE外接圆的切线 (2)AE=CD

(1)连AD,取AE中点M,连DM.∵AB是直径,∴∠ADB=∠ADE=90°,∴△ADE是直角三角形,DM是斜边中线,∴AM=DM,由AO=DO,∴∠MAO=∠MDO=90°.∴CD⊥MD.∵AE是

如图 圆o是三角形abc的外接圆 ab为直径,角bac的角平分线交圆o与点d,过点d的切线分别交a

(1)证:连接DB.三角形AFD和三角形ADB中,因为,角ADF=角ABD(弦切角定理),角FAD=角DAB(角平分线性质),所以,角AFD=角ADB=90度(直径对应的圆周角为90度),因而AF垂直

如图,圆O是RT三角形的外接圆,AB为直径角ABC=30度CD是元O的切线ED垂直AB与F判断三

(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.又∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°-90°=30°.而ED⊥AB于F,∴∠CED=90