如图,圆o中,已知AB,AC为弦,OM
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:19:44
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
是DE/AB吧,你打错了吧连接OD,因为O为中点,OD=0.5AC,所以OD为中位线OD//AC,又因为DE//AB所以AEDO为平行四边形DE=0.5AB=2
1、连接OD∵AB=ACOB=OD∴∠B=∠C∠B=∠ODB∴∠C=∠ODB∴OD∥AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线.2、∵AD是⊙O的直径∴∠ACD=90°∴∠DAC+∠D=90°∵∠
(1)证明:连接AP,OP,∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,∴OP∥AD;又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∵以AB为直径的⊙O
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2
1.连接OD,CDBC为圆O直径,∠BDC是BC所对的圆周角∴∠BDC=90°CD⊥AB,∠ADC=∠BDC=90°OD,OC都是圆O半径∴OD=OC于是,在等腰△OCD中,∠ODC=∠BCDDE切圆
再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢
(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴
AB为圆O弦,OM⊥AB,有AM=BM,同理AN=CN,M,N为AB、AC中点那么MN平行且等于1/2BCMN=1/2BC=2
连接OD和AD角C=角B=角ODB则OD||AC,角CAD=角ADO应为角CAD+角EDA=90所以角ADO+角EDA=90即半径垂直于ED得证
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
连接B,C,由于三角形ABC为直角三角形,得BC=2,弧BC的度数∠BAC=30°,∠BOC=60°.阴影部分面积等于三角形AOB与扇形BOC的面积之和,即为√3+4∏/6=√3+2∏/3.
AB为直径,∠ADB=90°,∠AFB=90°,又AB=AC所以,D为BC中点,又DE⊥AC,所以DE//BF,所以E为CF中点,所以DE是CF的垂直平分线再问:为什么E为CF中点再答:中位线定理DE
连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角
1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=
证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即