如图,圆O与Rt三角形ABC的斜边AB相切一点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:09:05
如图,圆O与Rt三角形ABC的斜边AB相切一点D
如图,在Rt三角形ABC中,角C等于 90,AC=8.BC=6圆O为三角形ABC的内切圆

圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5

如图 在RT三角形ABC中 角C=90度 点E在斜边AB上 以AE为直径的圆O与BC相切与点D 1求证AD平分角BAC

因为:圆O与BC相切与点D所以:OD⊥BC又因为:∠C=90°所以:AB⊥BC所以:OD//AB所以:∠CAD=∠ADO因为:OA=OD所以:∠OAD=∠ADO所以:∠CAD=∠OAD所以:AD平分∠

如图,已知圆o是Rt三角形abc的内切圆,斜边ab与圆o相切于点d,ao的延长线交bc于点e.求证:ad×ae=ao×a

已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.

如图,在RT三角形ABC中,角ACB=90度,AC=5,BC=12,AD是三角形的角平分线,过A,C,D三点的圆O与斜边

证明:【1】第一步:∠ACD=90°→AD是圆O的直径→∠AED=90°第二步:AD是三角形的角平分线→∠DAE=∠DAC又∵AD=AD∴△ACD≌△AED(AAS)→AC=AE【2】由勾股定理可求得

如图,Rt三角形ABC相似于Rt三角形EFG,EF=2AB,BD,FH是他们的的中线,三角形BDC与三角形FHG是否相似

证明:∵△ABC∽△EFG∴BC/FG=AC/EG∵CD=1/2AC,GH=1/2EG∴BC/GF=CD/HG∵∠C=∠G△BDC∽△FHG(两边成比例,夹角相等)周长比=1:2(周长比等于相似比)面

如图,在Rt三角形ABC中,∠C=90º,点O在AC上,以O为圆心,OC为半径的⊙O与AB切于点D,

连接OBOD垂直AB,BC垂直AC,OD=OC直角三角形ODB全等于直角三角形OCBDB=BC=6在直角三角形ADO中,AO=8-R(8-R)平方=R平方X(10-6)平方R=3

如图,圆O是Rt三角形ABC的内切圆,角C=90度,AD=2,圆O的半径为1,则三角形ABC的面积为

面积为6.AD=2,内切圆半径=1,所以三角形AOD中(AOD也是直角三角形),AD=2,OD=1,则AO=根号下5.设于是,sin

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

已知,如图,在RT三角形ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC为半径的圆与AC、AB分

BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2

如图,在RT三角形ABC中,角ACB=90度,D是AB边上一点,以BD为直径的圆O与边AC相切于点E,连接DE并延长,与

弦切角=圆周角∠AED=∠ABE∠FEC和∠FBE都是∠F的余角∠FEC=∠FBE∠FEC∠AED是对顶角∠FEC=∠AED所以∠ABE=∠FBE∠F,∠BDE分别是∠ABE∠FBE的余角所以∠F=∠

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

如图,在Rt三角形ABC中,斜边BC=12,角C=30,D为BC的中点,三角形ABD的外接圆圆O与AC交于F点,过A作圆

证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA

如图,在Rt三角形ABC中,角AC B等于九十度.de是边A B上的一点E笔底为直径的圆O与边AC

(1)证明:连接OE∵圆O与AC相切于E∴OE⊥AC∵∠ACB=90°∴OE∥BF∵BD为圆O的直径∴OB=OD=OE∴OE是△DBF的中位线∴BF=2OE∴BD=BF设圆O的半径为r,则BD=2r.

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

如图,圆O是RT三角形的外接圆,AB为直径角ABC=30度CD是元O的切线ED垂直AB与F判断三

(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.又∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°-90°=30°.而ED⊥AB于F,∴∠CED=90