如图,四边形abcd是○o的内接四边形,对角线ac,bd相交于点e,点f在ac上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:56:51
相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形
1、证明:连接OA∵AE⊥CD∴∠DAE+∠EDA=90∵DA平分∠BDE∴∠BDA=∠EDA∵OA=OD∴∠OAD=∠BDA∴∠OAD=∠EDA∴∠OAD+∠DAE=90∴∠OAE=90∴AE是圆O
你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了
很明显,两个四边形相似把四边形当成两个三角形看因为OF‖CD,OE‖CB∴三角形AOF≌三角形ACD三角形AOE≌三角形ACB∴四边形AEOF与四边形ABCD相似
36÷4=9(厘米)9²=81(平方厘米)答:四边形ABCD的面积是81平方厘米.
连AO延长至A'使A'O=AO连DO延长至D'使D'O=DO在OB(或延长线)上截C'O=CO在OC(或延长线)上截B'O=BO顺次连结A'B'C'D'即得与原四边形ABCD关于点O的对称四边形A'B
AEDF打错.是AEOF !如图,∵OF‖CD,OE‖BC.∴⊿AEO∽⊿ABC ⊿AOF∽⊿ACDAE/AB=EO/BC(=AO/AC)=OF/CD=FA/DA.,又显然四对角对
解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:
连OA、OB、OC、OD,将四边形ABCD分成四个小三角形,则四边形的面积等于这四个三角形的面积之和.S=(1/2)×4×(AB+BC+CD+DA)=72(cm²)
连接O和A、B、C、D四点,四边形ABCD的面积就是四个三角形AOB、BOC、COD、DOA的面积之和,这四个三角形以四边形边为底,以垂线为高,可就得面积.因此,四边形面积=1/2*AB*4+1/2*
设四边长为abcd连续O到和顶点可得四个三角形则四边形的面积等于四个三角形的面积四个三角形的面积和:1/2*4a+1/2*4b+1/2*4c+1/2*4d=2(a+b+c+d)=2*36=72平方厘米
∠B=118°,∠BAN=31°连接AC、BO因为弦切角=同弧所对圆心角的一半=同弧所对圆周角,所以由题得:对于弧AD:∠DAM=28°=½∠AOD=∠ACD,则∠ACD=28°,∠AOD=
连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C
连BD,AC两条线的交点处就是O,其与四个顶点的距离之和最小.原因:两点之间的连线中,直线是最短的.
对角线的交点.由△三边关系得:①OA+OC>AC,②OB+OD>BD,∴①+②得:OA+OC+OB+OD>AC+BD,∴只有O点是对角线交点时,它到四个顶点的距离之和最短.
,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C
连接AC、BD,∵四边形ABCD是关于点O的中心对称图形,则AC和BD都经过点O,且OA=OC,OB=OD,所以四边形ABCD为平行四边形.
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POQ=13×360°=120°,OP⊥QR,∵BC∥QR,∴OP⊥BC,∵四边形ABCD是⊙O的内接正方形,∴OP⊥AD,∠A
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/