如图,四边形ABCD为矩形,E为BC边中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:27:25
∵PA⊥面ABCD且CD∈面ABCD∴PA⊥CD又∵CD⊥AD,CD⊥PA且PA,AD∈面APD∴CD⊥面APD∵AG∈面APD∴CD⊥AG∵PC⊥面AEFG且AG∈面AEFG∴PC⊥AG∵AG⊥PC
这种题目,你要理解它的意思.当一些条件没有限定的时候,就要明白,它是一个通例.比如PD没有限定长度,那就是说,面PDC垂直于面PDA是一定的.所以,你要明白它为什么可以垂直.算了,不废话了,直接上答案
因为E在AB的延长线上,所以DC//BE因为CE//BD,所以EBDC是平行四边形,所以DC=BE因为ABCD是平行四边形,所以DC=AB,所以AB=BE因为AC=CE,所以角ABC是90度,所以AB
∵S矩形ABCD=32,AB=4∴BC=32/4=8∵四边形AECF是菱形∴AE=EC设BE=x,则EC=BC-BE=8-x=AE∵在Rt△ABE中,AB²+BE²=AE²
1、易知,这4条平分线为2组平行线,所以EFGH为平行四边形;2、∠A+∠D=180度;所以0.5*∠A+0.5*∠D=90度所以EFGH的一个内角=90度综上所述:EFGH为矩形
因为ABCD是平行四边形所以AD=BC因为三角形ABE是等边三角形所以EA=EB因为E是CD的中点所以DE=CE所以三角形ADE全等于三角形BCE所以∠D=∠C因为ABCD是平行四边形所以∠C+∠D=
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点(1)当E为BC的中点时,AE²=ED²=2,PE²=PA²+AE²=
证明:∵AD⊥AB,AD⊥PA,且PA、AB相交于A,∴AD⊥面PAB,又AD||面PAD,∴面PAB⊥面PAD,∴CD⊥面PAD,∴AG⊥CD,又PC⊥面AEFG,∴AG⊥PC,且CD交PC于C,∴
ABCD是平行四边形,所以AD=BC.E是AB的中点,所以AE=BE,ED=EC所以三角形ADE全等于三角形BCE,所以角EAD=角EBC.因为AD//BC,所以角DAE+角EBC=180所以角EAD
联结AC,取AC中点O,联结MO,NO.则易知MO⊥AB,NO‖PA,∵PA⊥AB,∴NO⊥AB.由此可知AB⊥平面MNO,故AB⊥MN.
∵ABCD是平行四边形∴AB=DC,AB∥DC∵BE=CF∴BE+EF=EF+CF即BF=CE∵AF=DE∴△ABF≌△DCE(SSS)∴∠B=∠C∵AB∥DC即∠B+∠C=180°∴∠B=∠C=90
联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以
我的月考题再问:会做吗,会的话能写一下解题过程吗再答:连接AC交F点,EF为三角形pac中位线。大体就这样了再答:我高二……不知道对不对,谅解~~再答:应该没问题吧再答:要过程?再问:能不能详细点,我
连BD∵∠F=180°-∠GEF-∠EGF=180°-∠GEF-(∠CDG+∠DCA)由已知可得:∠CDG=45°,∠GEF=90°∴∠F=180°-90°-(45°+∠DCG)=45°-∠DCA∵∠
证明:设平行四边形ABCD的两对角线AC与BD相交于点O,连接OE∵四边形ABCD是平行四边形∴点O是AC、BD的中点,∵AE⊥EC,BE⊥DE,∴OE=1/2AC,OE=1/2BD(OE即是直角三角
结论:角E大于等于角F证明如下:f使任意的么如果是那么做AB的中垂线L由于E为CD中点所以三角形ABE的外接圆圆心0必定在垂线L上所以同时易知圆o只有CD有且仅有一个交点E所以角E大于等于角F
∵四边形ABCD是平行四边形∴AD=BC,∠C+∠D=180°又EA=EB,E是CD的中点∴△ADE≌△BCE∴∠C=∠D∴∠C=∠D=90°所以四边形ABCD是矩形(有一个角是直角的平行四边形是矩形
因为ABCD为平行四边形,所以AB=DC.因为BE=FC,所以BE+EF=CF+EF,即BF=EC因为在三角形ABC和三角形EDC中,AB=DCBF=ECAF=ED所以三角形ABF全等于DEC,角B=
∵四边形ABCD为平行四边形∴OD=OB,OA=OC又∵在RT△BED中,O为斜边BD的中点∴OE=1/2BD(直角三角形斜边的中线=斜边一半)∴BD=2OE同理可得:AC=2OE∴AC=BD∴平行四