如图,以三角形ABC为直径作圆O,圆O与BC的边交点恰好为BC边的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:36:57
如图,以三角形ABC为直径作圆O,圆O与BC的边交点恰好为BC边的中点
如图,已知三角形ABC中,角A=90度,以AB为直径作半圆交BC于点D,过点D作圆O的切线交AC于点P,求证:PA=PC

画图弧AD对应的圆周角ABD=1/2弧AD对应的圆心角AOD=角AOP所以OP是中位线所以PA=PC

如图,以三角形ABC的边BC为直径作圆O分别交AB,AC于点F点E(急 急)!

连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,

如图,在RT三角形ABC中,角C=90度,AB=4,分别以AC,BC为直径作半圆,面积分别记为.

可能楼上几位都忽视了“半圆”!S1+S2=π(AC/2)²/2+π(BC/2)²/2=π(AC²+BC²)/8=πAB²/8=2π

如图 在三角形abc中,∠c=90 ∠abc的平分线ad交bc于d,过点d作de⊥ad交ab于e,以ae为直径作圆o

取AE的中点O,连OD,得OD=0.5AE=OA(直角三角形斜边上的中线等于斜边的一半)∴D在⊙O上(到圆心的距离等于半径的点在圆上)

如图,在Rt三角形abc中,角C=90度,以AC为直径作圆O,交AB于D,过点O作OE//AB,交BC于E(1)证:ED

(1)OA=OD,所以角A=角ADOAD//OE角ADO=角DOE,角COE=角A=角DOEOD=OC,OE=OE所以三角形DOE与COE全等所以角ODE=90度ED是圆O切线(2)没有给边的长度,求

如图,在三角形ABC中,AB=AC,以AC为直径作圆O交BC于点D,作DE垂直AB于点E,求证:DE是圆O的切线

证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一

如图在三角形ABC中,AB=AC,以AB为直径作圆O交BC于点D ,交AC于点G,过D 作DF垂直于AC于F,延长FD交

1)直线EF与圆O相切.证明:连接OD∵AB=AC,OB=OD∴∠B=∠C=∠OBD∴OD//AC∵EF⊥AC∴EF⊥OD因此,EF与圆O相切连接ADBD=CD=5AD=√(AB²-BD&#

如图在三角形abc中角c等于90度 角BAC的平分线AD交BC于D,过点D作DE垂直AD交AB于E,以AE为直径作圆O.

∵角BAC的平分线AD交BC于D则角CAD=角DAE过D点作DF⊥AB,交点为F,则CD=FDS△ACD=1/2AC·CDS△ADB=1/2AB·FD∴S△ACD/S△ADB=AC/AB∵三角形abc

如图,AD是△ABC的边BC上的高,以AD为直径作圆……

证明:连接ED、FD,△ABD与△AED为相似三角形,△ADC与△ADF为相似三角形则有AD/AC=AF/AD,推出AD²=AC.AF,AD/AB=AE/AD,推出AD²=AB.A

已知,如图,在三角形ABC中,AB=AC。以腰AB为直径作半圆O,分别交BC,AC于点D,E 问

 再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢

如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:B

取AB中点F,则FD=FB,FD垂直DE角FBD=角FDB,角A=角ADF角FBE=角FDE=90度1故角EBD=角EDB故BE=DE2故角ADF+角DEC=90度,又角A+角C=90度故角EDC=角

如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC

1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE

如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点,过点D作圆O的切线交AC边于点E。 (

解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:

如图,在三角形ABC中,角BAD=90°,以AB为直径作半圆O,交BD于

1、∵AB是直径∴∠ACB=90°∵OE∥AC∴∠OFB=∠ACB=90°∴OE⊥BC∴根据垂经定理:BF=CF=1/2BC=√3∴OF=OE-EF=OB-1根据勾股定理:OF²+BF

如图,在Rt三角形ABC中,∠C=90°,AC=12,BC=8,以AC为直径作圆,以B为圆心,4为半径作圆B,求证:圆O

BO^2=OC^2+BC^2=6^2+8^2=10^2,所以BO=10又因为圆O半径为AC/2=6,圆B半径为4,即Ro+Rb=6+4+10=BO,所以圆O与圆B相外切

如图,已知三角形ABC中,AB=AC,以AB为直径作圆O,交BC于D,交AC于F,过D作DE垂直AC于E ,已知DE与圆

AB为直径,∠ADB=90°,∠AFB=90°,又AB=AC所以,D为BC中点,又DE⊥AC,所以DE//BF,所以E为CF中点,所以DE是CF的垂直平分线再问:为什么E为CF中点再答:中位线定理DE

如图,在Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE.

(2)、OF=CF,则EF是三角形OBC的中位线,EF‖AB,DE⊥BC,OB=OD,四边形OBED是正方形,连结OE,OE是三角形ABC的中位线,OE‖AC,〈A=〈EOB=45度,〈ACO=〈CO

如图,以RT三角形ABC(∠C=90)的三边为直径向外作半圆,其面积分别为S1,S2,S3.是说明

是不是?证明S1=S2+S3.∵AB²=AC²+BC²又S1=π×AB²/8  S2=π×BC²/8  S3=