如图,以△abc的边ab为直径作○o,与bc交于点d,点e是弧bd的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:31:53
如图,以△abc的边ab为直径作○o,与bc交于点d,点e是弧bd的中点
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,DE是⊙O的切线.

证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:

证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.

(1)证明:连接AP,OP,∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,∴OP∥AD;又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∵以AB为直径的⊙O

如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE

(1)证明:连接AD,∵AB是直径,∴AD⊥BC,又∵BD=DE,∴∠BAD=∠EAD,而AD=AD,∴△ABD≌△ACE,∴AB=AC,即△ABC是等腰三角形;(2)∵AD⊥BC,即△ADC为直角三

如图,以△ABC的边AB为直径的⊙O经过BC的中点D,过D作DE⊥AC于E.

证明:(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,又BD=CD,∴AB=AC.(2)连接OD.∵OA=OB,BD=CD,∴OD∥AC.又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.

已知,如图,在△ABC中AB=AC,以AB为直径的圆交BC于点D,交AC于点E,

证明:连接AD.∵AB是直径∴∠ADB=90°∴AD⊥BC∴∠BAD=∠CAD∴BD=DE.

如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切与点D.

1)连接OD,可得OD⊥BC.∴OD//AC,∠ADO=∠2∵OD=OA∴∠ADO=∠1∴∠1=∠2∴AD平分∠BAC2)∵⊿ODB是直角三角形,OE=OD.∴OD²+BD²=OB

如图,以等腰三角形ABC的一腰AB为直径做圆

证明:连接AE∵AB是直径∴∠AEB=90度∵AB=AB∴∠BAE=∠DAE∴弧BE=弧DE∴BE=DE

如图,△ABC中以BC为直径的圆交AB于点D∠ACD=∠ABC,求证CA是切线

第一个问题∵BC为直径,D为圆上一点∴△BCD为直角三角形(直径所对圆周角为直角~这个结论应该是可以直接用的~毕业太久不记得了哈~)∵∠ACD=∠ABC且∠CDB=∠CDA=90°∴∠CAD=∠BCD

如图,在△ABC中,AB=AC,以AB为直径的圆分别交AC,BC于D,E.

如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,

如图,以△ABC的边AB为直径画圆,与边AC交于M,与边BC交于N,已知△ABC的面积是△CMN面积的4倍,△ABC中有

如图:连接BM,由圆内接四边形的性质可知,∠CNM=∠CAB,∠CMN=∠CBA,∴△CNM∽△CAB,又△ABC的面积是△CMN面积的4倍,可知相似比CMCB=12,AB为直径,∠BMC=90°,则

如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.

(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D

如图:在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,求征:BD=CD.

证明:连接AD,如图,∵AB为⊙O的直径,∴∠BDA=90°,∴AD⊥BC.∵AB=AC.∴BD=CD.

如图,以Rt△ABC的一直角边AB为直径作圆,交斜边BC于P点,Q为AC的中点.

(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP