如图,以rt三角形abc的直角边ab为直径做圆o,交斜边ac于点d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:51:15
如图,以rt三角形abc的直角边ab为直径做圆o,交斜边ac于点d
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

如图1(第一张图),在RT三角形ABC中,∠C=90°,∠ABC=30°.为探究RT三角形ABC中,30°角所对的直角边

证明:作BC边垂直平分线PD交AB于点P,连接PC因为PD为BC边垂直平分线所以PC=PB,∠PCB=∠PBC=30°,∠APC=180°-∠CPD-∠BPD=60°因为△ABC为直角三角形所以∠AC

已知三角形abc是腰长为一的等腰直角三角形,以rt三角形abc的斜边ab为直角边画完第二个等腰rt三角形acd在ert三

根号2的2012次方再答:抱歉是2013次方再答:看到没,再问:在三角形abc中角c等于90度哎比起分别为角a角b角c所对的边路a等于b等于e则三角形的baby系的面积是多少?再答:画个图吧!再问:在

如图 ,把Rt三角形ABC放在直角坐标系内,其中角

根据坐标得AB=3,则AC=4,C点的坐标为(1,4)平移的意思是坐标y不变,当y=4时,直线上对应的x=5,则C的坐标变为(5,4)则A的坐标为(5,0),B的坐标(8,0)

已知,如图,在平面直角坐标系中,RT三角形ABC的斜边BC在x轴上,直角顶点A在y

(1)y=-1/2(x+1)(x-4)(2)AC直线为x+2y-4=0所以根据点到直线的具体公式而且P点在AC直线上方所以P到AC的距离为(m+2n-4)/√(1^2+2^2)S=(m+2n-4)/√

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

1.如图,以RT三角形ABC的直角边AB为直径的半圆O,与斜边AC交与D,E是BC边上的重点,连接DE.

只做第二题.用^代表平方CE/ED=6/5,AE/EB=2/3两式相乘,得:(AE/ED)*(CE/EB)=4/5=>(CE/EB)^=4/5(易证:AE/ED=CE/EB)两式相除,得:(AE/CE

已知:如图,分别以Rt△ABC的直角边AC.BC为边,在Rt△ABC外作两个等边三角形(省略).

∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE

如图,已知ΔABC是边长为1的等腰直角三角形,以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,再以RtΔAC

(1)已知ΔABC是直角边长为1的等腰直角三角形,由勾股定理可知它的斜边AC=√2同理:再以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,    &

如图,三角形ABC中,AG垂直BC于点G,以A为直角顶点,分别以AB、AC为直角边,向三角形ABC外作等腰Rt三角形

据题意知,∠EAB=90度,∠PAE+∠BAG=90度,∠PAE+∠PEA=90度,所以∠BAG=∠PEA∠PAE=∠ABG,又EA=BA,故△BAG≌△AEP,得PE=AG,同理QF=AG,所以PE

如图在平面直角坐标系中有rt三角形abc

1d=-32y=6/xx+2y-7=03M(0,2)4x+2y-7=02y=-x+7m=-1n=7k=66

如图已知rt三角形abc的两条直角边ac,bc的长分别为3cm,4cm以ac为直径作圆与斜边ab

连接CD∵AC为⊙O直径∴∠CDA=90°(圆周角性质)即AB⊥CD由勾股定理可知:AB=5cm由面积相等可知CD=AC×BC/AB=2.4cm∴根据勾股定理,AD=1.8cm

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×