如图,两个同心的均匀带电球壳,半径分别为RA=5CM
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:47:59
高斯面内有电荷.注意条件里说的是“均匀带电球体”,电荷是分布在整个球体上的,不是只分布在表面.
外球壳接地即电势为0,因此外球壳外无电场线,即壳外电势处处为0(静电屏蔽).kq/R+kQ/R=0,所以外球壳带电-q.
/>根据问题的球对称性,电场沿径向,在距球心r半径处取一球面,利用高斯定理,此球面上的电场积分和其所包围的内球壳所带的电荷Q有关系:∮E•dS=4πr²E=Q/εo故E=Q/(4
E=kQ/r^2U=E/qUab=φa-φb450v=Q/r^2450=Q/r^2Q=2.205
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
静电感应.球壳内外分别均匀带电-Q,+Q.利用均匀带电球面内部是等电势与叠加原理从而电势:r>r2V=kQ/rr1
用高斯定理求E,对称性选取高斯面为过P点同心的球面,此面上的E大小均相等.4πr²E=Q/εoE=Q/4πεor²利用电场力做功求电势,由P点向外球壳移动电荷q,电场力做功为qU,
D=εr*ε0*E=Q/(4*π*R2)导体中(包括表面)没有电荷定向移动的状态叫做静电平衡状态.“静电平衡”指的是导体中的自由电荷所受的力达到平衡而不再做定向运动的状态.对于电荷都分布在表面可用高斯
本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr
感觉你对面元的理解不够.你觉得面元上有很多点,从每个点到K点的连线的方向都不一样.事实确实是这样的,但是面元是面积趋于0的单元,前述的“不一样”在计算的时候是可以忽略的,也就说面元上任意一点到K点的距
带电同心球壳?再问:是的,带电的同心球壳再答:小于r1为0,大于r1小于r2为q1/ε,大于r2为(q1+q2)ε
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
空间电场呈球对称分布(带电球体内也是),直接应用高斯定理即可.再问:球里的电场是否为零呢再答:不是,因为题目说是均匀带电球体,应当理解为绝缘带电球体,即电荷不能自由移动,所以球内电场并不为零。如果是金
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)
分析:由点电荷的场强公式可得出q在a点形成的场强,由电场的叠加原理可求得薄板在a点的场强大小及方向;由对称性可知薄板在b点形成的场强;解;q在a点形成的电场强度的大小为E1=kq/d^2,方向向左;因
1.用高斯定律求出两球壳间的电场强度,很简单:积分EdS=Q,E=[1/(4πε0)]×(Q/r²)2.电势:U=积分Edl,积分限R1到R2,因为外球壳接地,电势为0.电场和电势的值都与r
一个均匀带电球体的电场相当于把电荷集中在中心的点电荷产生电场一个均匀带电球体外包围一个的带电球壳.因为球对称性,直接对空隙用高斯定理,在空隙里的电场就是把内部球的电荷集中在中心的点电荷产生电场,在球壳